

SafeLogic S.A.R.L, € 30 489 in capital
Trade Register: Paris B 422 461 848

27-29, rue Raffet - 75016 Paris
 Tel: (33) (0)1 45 72 25 15 - Fax: (33) (0)1 45 72 14 06 - Web: www.safelogic.com

SafeAPI - v1.20
User Guide

January 27, 2005

SafeLogic SafeAPI V1.20 - User Guide 2

Contents

1 INTRODUCTION..5

1.1 CONTENTS OF THIS GUIDE ..5

1.2 INTENDED AUDIENCE ...5

1.3 ENVIRONMENT ..5

2 Installing SafeAPI ...6

2.1 INSTALLING THE JDK 1.4 FROM SUN MICROSYSTEMS. ..6

2.2 INSTALLING THE SAFEAPI BINARY FILES ...6
2.2.1 Standard installation ...6
2.2.2 Customized installation...7

2.3 LICENSE FILE ..7

2.4 UPDATING THE JAVA CLASSPATH ...8
2.4.1 Windows NT/2000/XP Classpath ...8
2.4.2 Unix/Linux classpath...8

2.5 DLL INSTALLATION (WINDOWS) ...8

2.6 VERIFYING AND TESTING THE INSTALLATION...9

2.7 JAVADOC ..9

2.8 JAVADOC ON LINE..9

3 Configuring the Technical Environment in Windows...10

3.1 GENERAL INFORMATION...10

3.2 EXAMPLE: MICROSOFT VISUAL BASIC 6.0...10

4 USING SAFEAPI..13

4.1 CLASSES ..13

4.2 LIST OF SAFEAPI CLASSES..14

4.3 LIST OF SAFEAPI CLASSES PER LICENSE TYPE ..14

5 CLASS REFERENCE MANUEL..15

5.1 CLASS CONVERT: STRING CONVERSION METHODS ..15

5.2 CLASS SEEDBOX: VISUAL METHODS FOR GENERATING SEEDS ...16

SafeLogic SafeAPI V1.20 - User Guide 3

5.3 CLASS CRYPTOCOMMON: COMMON METHODS OF CRYPTOXXX CLASSES17
5.3.1 CryptoCommon : Parameters setting API ..17
5.3.2 List of Modifiable Parameters ...18
5.3.3 List of the Parameter Default Values..18
5.3.4 Error Detection Methods...19

5.4 METHODS FOR CREATING SEEDS OR RANDOM VALUES...20
5.4.1 Initial Creation of a File of Random Numbers (seed file)..20
5.4.2 Dynamic Seed Generation..20

5.5 OTHER METHODS..21

5.6 CLASS CRYPTOHASH: HASH METHODS..22
5.6.1 Hashing a Buffer...22
5.6.2 Hashing a File...23
5.6.3 Hashing a small size Buffer ..23

5.7 CLASS CRYPTOSYM: SYMMETRIC ENCRYPTION METHODS..24
5.7.1 Generating a Secret Key ..24
5.7.2 Encrypting a Buffer ...25
5.7.3 Encrypting Buffers: Overloaded Methods With Key and IV Arguments26
5.7.4 Encrypting Files ..27
5.7.5 Table of Symmetric Encryption Algorithms...27

5.8 CLASS CRYPTOASYM: ASYMMETRIC ENCRYPTION AND SIGNATURE METHODS.........................28
5.8.1 Generating a Pair of RSA Keys ..28
5.8.2 Encrypting Buffers With RSA..29
5.8.3 Combination Asymmetric/Symmetric File Encryption With RSA: Principles30
5.8.4 Managing Recipient Lists..31
5.8.5 Asymmetric File Encryption ..32
5.8.6 Signature & Signature Verification..32

5.9 CLASS CRYPTOASYMRAWRSA: METHODS OF ASYMMETRIC ENCRYPTION USING “NATIVE” RSA
KEYS 36

5.9.1 Encrypting buffers with “native” RSA keys..36
5.9.2 Decrypting buffers using “native” RSA keys ...37
5.9.3 Direct application of RSA encryption ..41

5.10 CLASS CRYPTODIR: METHODS FOR ENCRYPTING DIRECTORIES ...43
5.10.1 Dynamic parameterization of CryptoDir..43
5.10.2 List of the default parameter values ...43
5.10.3 Symmetric encryption of directories ...44
5.10.4 Asymmetric directory encryption...47

6 Using The Methods ..49

6.1 USING THE HASHING AND ERROR HANDLING METHODS..49

6.2 USING THE SYMMETRIC ENCRYPTION METHODS...49

6.3 USING THE ASYMMETRIC ENCRYPTION METHODS...50

6.4 SAMPLE JAVA PROGRAMS ...51

6.5 VISUAL BASIC EXAMPLES: COMPLETE SAFEAPI_VB PROJECT..51

7 IMPLEMENTATION/CRYPTOGRAPHY FAQ...52

SafeLogic SafeAPI V1.20 - User Guide 4

7.1 PURPOSE OF THIS FAQ ...52

7.2 HOW CAN I TEST THE IMPLEMENTATION OF MD5?...52

7.3 HOW CAN I TEST THE IMPLEMENTATION OF SHA-1?..52

7.4 HOW CAN I TEST THE IMPLEMENTATION OF BLOWFISH?...53

7.5 HOW CAN I TEST THE IMPLEMENTATION OF CAST-128? ...53

7.6 HOW CAN I TEST THE IMPLEMENTATION OF IDEA?..54

7.7 HOW ARE PSEUDO-RANDOM NUMBERS GENERATED WITH SAFEAPI?54

7.8 HOW IS THE IV GENERATED IN CFB WITH SAFEAPI? ..54

7.9 HOW ARE THE SECRET KEYS STORED?...55

7.10 HOW ARE THE RSA PRIVATE KEYS STORED?..55

8 SUPPORT ..56

SafeLogic SafeAPI V1.20 - User Guide 5

1 INTRODUCTION

1.1 Contents of This Guide

This guide is the user documentation for the SafeAPI Cryptography API for Windows
NT/2000/2003/XP and Unix.

For Windows NT/2000/2003/XP, it discusses how to use this library and illustrates
the explanation using Visual Basic:

• Parameter settings for Visual Basic 6.0 projects
• Description of the API: functions, arguments, return values, and error codes.

1.2 Intended Audience

This guide is written for Java developers (or developers using Visual Basic, C/C++,
Delphi, PowerBuilder, etc.) who want to incorporate calls to the SafeAPI
cryptography API. The SafeAPI cryptography API is designed to simplify the
development of applications that use hashing, signature, and symmetric or
asymmetric encryption functions.

A basic knowledge of cryptography concepts is needed to understand this document.

1.3 Environment

SafeAPI was tested in the following environments:

Environment Versions
Windows NT • Windows NT Server V 4.0 SP 4 or higher.

• Windows NT Workstation V 4.0 SP 4 or higher.
Windows 2000/XP • Windows 2000 Server SP 2 or later

• Windows 2000 Professional SP 2 or higher.
• Windows XP Professional SP 1 or higher.

Unix • Sun Solaris 7.x/8.x/9.x (SPARC and Intel).
• Linux (Intel) RedHat 6.1/7.1/8.0/9.0.
• Other Unix versions which support Java.

JVM
(Java Virtual Machine)

• Sun Microsystems JDK 1.4.0, JDK 1.4.1 or JDK
1.4.2.

Support for this API is provided for all these Java environments and any newer
versions.

SafeLogic SafeAPI V1.20 - User Guide 6

2 Installing SafeAPI

2.1 Installing the JDK 1.4 from Sun Microsystems.

SafeJDBC requires the installation of the JDK 1.4 from Sun Microsystems.

The installation of the JDK 1.4 is described on Sun Microsystems’ website at the
following address: http://java.sun.com/j2se. This page also contains downloads for
other environments: Sun Solaris, Itanium, etc.

2.2 Installing the SafeAPI binary files

Download safeapi_v1.20.zip file at:
http://www.safelogic.com/safeapi/download/safeapi_v1.20.zip

2.2.1 Standard installation

We suggest that the following installation directories be used by default:

Windows
NT/2000/XP

Unzip and copy the \safelogic directory to c:\

Unix/Linux Create a user named safelogic, unzip and copy the \safelogic directory in
the WinZip file into /home

This is the resulting Windows tree:

Windows Directory Comments
c:\safelogic\lib Java common libraries.
c:\safelogic\safeapi SafeAPI base directory.
c:\safelogic\safeapi\conf SafeAPI scripts for classpath.
c:\safelogic\safeapi\doc User Documentation.
c:\safelogic\safeapi\examples Sample Java programs.
c:\safelogic\safeapi\javadoc Javadoc.
c:\safelogic\safeapi\keys Keys & license directory.
c:\safelogic\safeapi\lib Java SafeAPI libraries. (Includes DLL).

http://java.sun.com/j2se
http://www.safelogic.com/safeapi/download/safeapi_v1.20.zip

SafeLogic SafeAPI V1.20 - User Guide 7

This is the resulting Unix/Linux tree:

Unix/Linux directory Comments
/home/safelogic/lib Java common libraries.
/home/safelogic/safeapi SafeAPI base directory.
/home/safelogic/safeapi/conf SafeAPI scripts for classpath.
/home/safelogic/safeapi/doc User Documentation.
/home/safelogic/safeapi/examples Sample Java programs.
/home/safelogic/safeapi/javadoc Javadoc.
/home/safelogic/safeapi/keys Keys & license directory.
/home/safelogic/safeapi/lib Java SafeAPI libraries. (Includes DLL).

2.2.2 Customized installation

SafeAPI may be installed in any directory.

The only constraint is to update the CLASSPATH (defined below) with the
corresponding files and directories.

2.3 LICENSE FILE

SafeAPI uses a license file called safeapi_license.txt. The lines contains :

• The keyword “safeapi »
• A license code for the type of product.
• The server names list (HOSTNAME), separated by “;”
• A product evaluation end date or 99999999 for full versions.
• Your email address.
• A hexadecimal string corresponding to the signature for the above elements

with a private RSA key.

By default, safeapi_license.txt is installed in the keys directory.
(c:\safelogic\safeapi\keys or /home/safelogic/safeapi/keys)

If you choose a customized installation, please follow these constraints:

• safeapi_license.txt must be installed in a directory defined in the
classpath.

• safeapi_license.txt must be installed in the same directory as

license@safelogic.com_1_RSA.pkf. (The default file installation is in
the keys directory).

mailto:license@safelogic.com_1_RSA.pkf

SafeLogic SafeAPI V1.20 - User Guide 8

2.4 Updating the Java CLASSPATH

The CLASSPATH Java environment variable must include:

1. Access path to the two libraries cryptix.jar and safeapix.jar.

2. Access path to the keys directory which contains safeapi_license.txt
and license@safelogic.com_1_RSA.pkf.

3. Access path to the examples directory which contains Java samples.

2.4.1 Windows NT/2000/XP Classpath

For the standard installation, add the following string to the CLASSPATH:

c:\safelogic\lib\cryptix.jar;c:\safelogic\safeapi\lib\safeapix.jar;
c:\safelogic\safeapi\keys;c:\safelogic\safeapi\examples\java;

2.4.2 Unix/Linux classpath

For the standard installation, add the following string to the CLASSPATH:

/home/safelogic/lib/cryptix.jar;/home/safelogic/safeapi/lib/safeapix.jar;
/home/safelogic/safeapi/keys;/home/safelogic/safeapi/examples/java;

2.5 DLL installation (Windows)

• Copy the safejnidll.dll & safeapix.dll from

c:\safelogic\safeapi\lib into a "system" folder on the hard drive.

• Example: c:\WINDOWS\system32.There are no constraints on where to put the

two DLL.

Registering safeapix.dll

If the DLL is installed in system32, it must be registered:

• Open an MS-DOS session on your workstation.
• CD C:\WINDOWS\System32.
• Run the regsvr32 command on the DLL. Example:

C:\WINDOWS\System32>regsvr32 safeapix.dll

mailto:license@safelogic.com_1_RSA.pkf

SafeLogic SafeAPI V1.20 - User Guide 9

2.6 VERIFYING AND TESTING THE INSTALLATION

Open an MS-DOS or Bash session, and run the sample Java program TestHash
with the string "abc" as the parameter:

java com.safeapi.test.TestHash "abc"

The program prints to the screen the MD5 and SHA-1 values for "abc":

MD5: 900150983CD24FB0D6963F7D28E17F72
SHA-1: A9993E364706816ABA3E25717850C26C9CD0D89D

2.7 Javadoc

SafeAPI Javadoc is in the /safelogic/safeapi/javadoc directory in
safeapi_v1.20.zip.

2.8 Javadoc on line

SafeAPI Javadoc is browsable online at:
http://www.safelogic.com/safeapi/v1.20/javadoc.

http://www.safelogic.com/safeapi/v1.20/javadoc

SafeLogic SafeAPI V1.20 - User Guide 10

3 Configuring the Technical Environment in Windows

3.1 General Information

SafeAPI is delivered in the form of functions that can be called from any development
environment supporting the use of DLL.

Refer to the technical documentation for your development environment for
instructions on how to call DLL functions.

We have selected a configuration that uses Microsoft Visual Basic 6.0 to illustrate the
general approach.

3.2 Example: Microsoft Visual Basic 6.0

In the Visual Basic environment, the DLL components must be "imported" in order to
use the cryptography API. This is done by adding the safeapix.dll to the project
references.

Here is a brief summary of the steps to follow:

• Create a new VB Project.

• Project menu - References sub-menu. In the list of available References,
safeapix should appear. Click the checkbox, then click the OK button.

If the DLL does not appear in the list of Available references, use the Browse
button to locate it (see image below).

SafeLogic SafeAPI V1.20 - User Guide 11

The end result of this operation should resemble this screen shot:

You can verify that a component of the DLL is available by using the Object Browser.
This is accessed through an icon in the toolbar, the F2 shortcut key, or the View
menu.

If the DLL is correctly integrated with the project, you should be able to select
safeapix in the list of libraries:

SafeLogic SafeAPI V1.20 - User Guide 12

SafeLogic SafeAPI V1.20 - User Guide 13

4 USING SAFEAPI

4.1 Classes

SafeAPI is a set of classes, as defined by object oriented terminology. A class must
be instanced prior to any method call. A class is a group of methods (or functions).

The usage is the same for any calling language whether or not the DLL is used:
Visual Basic, C/C++, Delphi, PowerBuilder, etc. Note that SafeAPI does not require
the calling program to be object oriented.

For example, the CryptoHash class is dedicated to hash computations. The
hashDataFile computes the hash value of any file. The result is returned as a
byte array.

The following is an example of MD5 hash computation with Java, C++ and Visual
Basic:

Java

 // Loads an instance of CryptoHash
 CryptoHash cryHash = new CryptoHash();

 // Compute the Hash value of safeapix.dll with MD5 algorithm
 byte[] hash = cryHash.hashDataFile("MD5",
 "c:\\windows\\system32\\safeapix.dll");
 // Etc...

Visual C++ 6.0

 // Loads an instance of CryptoHash
 ICryptoHash cryHash;

 if (!cryHash.CreateDispatch("safeapix.CryptoHash"))
 AfxMessageBox("Error! SafeAPI CryptoHash not loaded!" ,0 ,0);

 // Compute the Hash value of safeapix.dll with MD5 algorithm
 COleVariant hash = cryHash.hashDataFile("MD5",
 "c:\\windows\\system32\\safeapix.dll");
 // Etc...

Visual Basic 6.0

 ' Loads an instance of CryptoHash
 Dim cryHash As New CryptoHash

 ' Compute the Hash value of safeapix.dll with MD5 algorithm
 Dim hash As Variant
 hash = cryHash.hashDataFile("MD5",
 "c:\\windows\\system32\\safeapix.dll")
 ' Etc...

SafeLogic SafeAPI V1.20 - User Guide 14

4.2 List of SafeAPI classes

SafeAPI classes in alphabetic orders:

Classes Methods

Convert Conversion tools and methods
CryptoAsym Asymmetric Cryptography API methods
CryptoAsymRawRSA Pure/raw RSA Asymmetric Cryptography API methods

CryptoCommon
Defines methods for all SafeAPI sister CryptoXxx classes;
must not be used directly and is instanced by sister
CryptoXxx classes:
CryptoAsym, CryptoAsymRawRSA, CryptoDir, CryptoHash, CryptoSym.

CryptoDir Directory encryption/decryption API methods.
CryptoHash Hash methods for buffers and files.
CryptoSym Symmetric Cryptography API methods.

Parms
This class defines the parameters that API users may get
and modify using CryptoCommon.getParameter and
CryptoCommon.setParameter.

SeedBox Seed generation visual methods
Status Contains all the error & return codes as Strings.

4.3 List of SafeAPI classes per License Type

Access to the classes is granted depending on the SafeAPI License type:

SafeAPI License Type Accessible Classes
Evaluation License All classes (with time limit).
Hash License Convert, CryptoHash, Status

Symmetric Cryptography License Hash License Classes,
CryptoSym, SeedBox

Asymmetric Cryptography License Symmetric Cryptography License,
CryptoAsym, CryptoAsymRawRSA

Directory Encryption License
All classes:
Asymmetric Cryptography License,
CryptoDir

SafeLogic SafeAPI V1.20 - User Guide 15

5 CLASS REFERENCE MANUEL

5.1 Class Convert: String Conversion Methods

This is a class of type conversion utilities provided to simplify using the API:

• Converts bytes to a string.
• Converts bytes to a hexadecimal value.

Method bytesToHexString
Description Converts a binary value into hexadecimal format.
Arguments byte [] bBuffer Buffer containing bytes.
Return
value

String Buffer converted into a string of hexadecimal
characters.

Method bytesToString
Description Converts a buffer of bytes into a string.
Arguments byte [] bBuffer Buffer containing bytes.

Return
value

String Buffer converted into a string of characters.

Method hexStringToBytes
Description Converts a string containing a hexadecimal representation into a

byte [].
Arguments String sHexChain Hexadecimal representation of the string.
Return
value

byte [] Hexadecimal string converted into bytes.

Method stringToBytes
Description Converts a string into a buffer containing bytes.
Arguments String sChain String of characters.
Return
value

byte [] The string converted into bytes.

SafeLogic SafeAPI V1.20 - User Guide 16

5.2 Class SeedBox: Visual Methods for Generating Seeds

A class for randomly generating seeds. The user is asked to enter data into a dialog
box.

The seed value is created in order to initialize a pseudo-random number generator.
Seed values are widely used to generate symmetric or asymmetric keys whose
values cannot be detected by an attacker.

Method seedDialog
Description Generates a random seed of the desired length by asking the user to

enter data into a dialog box. Returns the seed.
String sTitle Title of the dialog box [optional]
String sCaption Caption for the dialog box [optional]

Arguments

int lSeedSize Length of the seed (in bits)
Return
value

byte [] The seed is returned as a series of bytes

Method getSeedValue
Description Returns the value of the generated seed.
Arguments None
Return
value

byte []

The seed is returned as a series of bytes

Method seedCanceledByUser
Description Indicates whether the user canceled the seed generation (by closing

the dialog box).
Arguments None
Return
value

Boolean

True: the user closed the box before normal completion
False: the seed generation completed normally

An example of using this class in VB is the method bt_GenSeed_Click found in the
implementation example. This method is found in the Form_GenKeyTest.frm file,
which corresponds to the GenKeyTest window.

SafeLogic SafeAPI V1.20 - User Guide 17

5.3 Class CryptoCommon: common methods of CryptoXxx classes

CryptoCommon cannot be instanced and is hidden in the DLL.

It contains common methods for the following classes:

• CryptoAsym,
• CryptoAsymRawRSA,
• CryptoDir,
• CryptoHash,
• CryptoSym.

5.3.1 CryptoCommon : Parameters setting API

These methods allow you to specify the system environment where the cryptography
functions will be used, directly from your development environment.

This type of implementation eliminates the use of static parameter settings in the DLL
and/or the ".ini" files, a source of errors and attacks.

The parameters that can be set dynamically concern:

• the directory for storing keys.
• the error report file (dump file).

Method setParameter
Description Used to change the value of an API parameter.

String ParamName Name of the parameter to be changed
(see list below)

Arguments

String Value New value for the indicated parameter.
Return
value

Boolean True: the change was made
False: the change was not made

Method getParameter
Description Used to retrieve the current value of an API parameter.
Arguments String ParamName Parameter name

(see list below)
Return
value

String The value of the parameter called ParamName.

SafeLogic SafeAPI V1.20 - User Guide 18

5.3.2 List of Modifiable Parameters

Parameter Role
DEFAULT_SIGN_ALGO Default signature algorithm used.
DEFAULT_SYM_ALGO Default symmetric algorithm used in asymmetric cryptography and

in combined asymmetric/symmetric cryptography.
DUMP_ENABLED True or False:

Indicates whether the API should create a dump file detailing the
unknown errors of error code CRYPTO_UNKNOWN_ERROR.

DUMP_FILEPATH Complete name of the dump file (written in append mode).
KEY_DIRECTORY Directory for storing keys.
MIN_PASSPHRASE_SIZE Minimum size allowed for a passphrase (number of characters).
RAND_SEED_DIR Directory for storing seed files.

5.3.3 List of the Parameter Default Values

Parameter Default value

DEFAULT_SIGN_ALGO RSA
DEFAULT_SYM_ALGO Blowfish
DUMP_ENABLED False
DUMP_FILEPATH user.home directory
RAND_SEED_DIR Directory that contains safeapi_license.txt.

(keys).
MIN_PASSPHRASE_SIZE 8
KEY_DIRECTORY Directory that contains safeapi_license.txt.

(keys).

SafeLogic SafeAPI V1.20 - User Guide 19

5.3.4 Error Detection Methods

The general approach for diagnosing an error is as follows:

• 1) Verify that the operation just performed has completed properly.
• 2) If not, request the type of error.
• 3) A detailed report is available if the error type does not provide enough

information. This may be the case for system errors.

This procedure is followed by using three methods, one for each of the three tasks
described:

Method isOperationOK
Description Indicates whether or not the call to the last cryptography method

finished correctly.
Arguments None.
Return
value

Boolean

True: the last method executed successfully
False: the last method failed

Method getRegisteredError
Description Indicates the reason why the call to the last cryptography method

failed.
Arguments None
Return
value

String Error message (diagnostic error code)

Method getRawError
Description Returns detailed information on the last error, as a string.
Arguments None.
Return
value

String Detailed error message.

The list of error messages returned by this function is provided in a table found in the
appendix (Appendix A: Error Code Table by Method).

The table also lists the possible errors for each cryptography method (values of
getRegisteredError and getRawError).

SafeLogic SafeAPI V1.20 - User Guide 20

5.4 Methods for Creating Seeds or Random Values

5.4.1 Initial Creation of a File of Random Numbers (seed file)

Method createSeedFile
Description Creates (or replaces) the file used to seed the random number generator.

Uses a random number generator dialog box to prompt the user.
Arguments String Title The title for the seed dialog box
Return Value String Caption The caption for the seed dialog box

Notes:

• A seed file must be created before using the symmetric and asymmetric
encryption functions.

• The random data are passed as input to a pseudo-random number generator

that is based on the ANSI X9.17 standard and implemented by the
getRandomBytes() method.

• Call setParameter() with "RAND_SEED_DIR" to specify a directory for storing

the seed file.

5.4.2 Dynamic Seed Generation

Method getRandomBytes
Description Generates a seed or pseudo-random value of 24 bytes.
Argument String sMsg Initialization message. A string containing

any characters
Return
value

byte [] Hash value for the data buffer (series of bits).

Notes:

• A seed file must be created using createSeedFile() before calling
getRandomBytes().

• The seed values are passed as data to the symmetric or asymmetric key

generation functions (bSeed parameter).

SafeLogic SafeAPI V1.20 - User Guide 21

5.5 Other Methods

Method getVersion
Description Gets the SafeAPI Version
Arguments None.
Return value String SafeAPI Version information.

Method wipe
Description Destroys the specified file in a secure manner, by writing random data

over the file contents in several passes.
String FilePath Complete name of the file to be wiped. Arguments
int Level Security level, from 1 to 3 (8 to 20 passes)

Note:

• Wipe provides a way to delete a file so it cannot be retrieved.
• Attention: a file erased by wipe is totally unrecoverable.

SafeLogic SafeAPI V1.20 - User Guide 22

5.6 Class CryptoHash: Hash Methods

CryptoHash contains:

• Hash methods for unlimited size buffers.
• Hash methods for files.
• Hash methods for small size buffers.

5.6.1 Hashing a Buffer

Method hashDataBufferInit
Description Initializes the tool and the buffer to be hashed.
Arguments String Algorithm Hash algorithm:

• "MD5"
• "SHA-1"

Method hashDataBuffer
Description Adds to the buffer the bytes passed as an argument. The buffer is not

hashed until hashDataBufferDigest is called.
This method should only be used after the buffer has been initialized.

Arguments byte [] bSubBuffer Bytes to be added to the hash buffer

Method hashDataBufferDigest
Description Calculates and returns the hash value for the buffer, which was first

initialized and filled with data by calling the appropriate methods.
Arguments None.
Return
value

byte [] Hash value for the data buffer (series of bits)

Notes:

The hash value for the buffer/string is done by accumulation, so hashing can be done
on strings of unlimited size. The steps must be performed in this sequence, however:

• 1) Initialization: hashDataBufferInit.
• 2) Add data to the hash buffer: hashDataBuffer.
• 3) Calculate the hash value: hashDataBufferDigest.

SafeLogic SafeAPI V1.20 - User Guide 23

5.6.2 Hashing a File

Method hashDataFile
Description Calculates and returns the hash value associated with the specified

file, using the algorithm specified as an argument.
String

sAlgorithm

Hash algorithm:
• "MD5"
• "SHA-1"

Arguments

String sFilePath Complete file name
Return
value

byte [] Hash value for the data buffer (series of bits).

Notes:

• The term complete name means the complete pathname for the file, including
the directories and disk drive.
• Windows NT/2000 example: c:\safelogic\lib\cryptix.jar
• Unix example: /home/safelogic/lib/cryptix.jar

5.6.3 Hashing a small size Buffer

Method hashBufferHex
Description Calculates and returns the hash value associated with the specified

buffer, using the algorithm specified as an argument
String

sAlgorithm

Hash algorithm:
• "MD5"
• "SHA-1"

Arguments

String bBuffer Buffer to hash
Return
value

String Hash value for the data buffer (hexadecimal String).

Notes:

• Allows hashing with a single operation.

• The return value is a hexadecimal String. This allows the result to be displayed
on the screen and/or to be stored directly without prior conversion.

SafeLogic SafeAPI V1.20 - User Guide 24

5.7 Class CryptoSym: Symmetric Encryption Methods

5.7.1 Generating a Secret Key

Method genSecretKey
Description Generates a secret key of the desired length (if valid) using the

specified algorithm, based on the seed provided. Returns the key.
char [] caPassphrase Passphrase protecting the key.
String

sAlgorithm

Symmetric encryption algorithm.
(See "Table of Symmetric Encryption Algorithms")

int Length Key length (in bits)
byte [] bSeed Value of the seed.
String sEmail Reference email for the key.

Arguments

int lKeyIndex Index number for the key (optional).
Return
value

None.

Notes:

The generated secret key is stored in a file whose name is formed by concatenating
the following objects in the order listed, separated by the character "_":

• The reference email.
• The index passed to genSecretKey.
• The name of the algorithm selected: Blowfish, CAST-128, IDEA.
• The extension ".skf ".

The "Key ID" for the secret key is the lower-case generic name for the file, without
any directories or extensions.

Key ID examples:

• user@domain.com_1_ cast-128
• user@domain.com_2_ blowfish

Remember:
The directory where this file is stored is defined by calling the setParameter()
method and passing it the KEY_DIRECTORY parameter.

Before the secret key is saved on the hard drive, it is encrypted with:

• The algorithm selected by the user in the API: Blowfish, CAST-128, IDEA.
• CFB mode.
• A 128-bit key that is the MD5 hash value for the passphrase parameter passed

to genSecretKey.

The secret key is therefore stored in a highly secure form on the hard drive, and the
passphrase is not stored.

SafeLogic SafeAPI V1.20 - User Guide 25

5.7.2 Encrypting a Buffer

Method encryptBuffer
Description Encrypts the buffer passed as an argument, using the key associated

with the specified passphrase.
String sKey_ID Key ID for the secret key.
char [] caPassphrase Passphrase protecting the key sKey_ID.

Arguments

byte [] bBuffer Buffer to be encrypted.
Return
value

byte [] Encrypted buffer, preceded by the IV
(Initialization Vector) generated internally by
the method.

Reminder:

The Key_ID for the secret key is an identifier in the format:

<email>_<index>_<algorithm>

where:
e_mail: POP account associated with the key, such as user@domain.com.
index: Numeric index.
algorithm: Algorithm used. Must be either Blowfish, CAST-128, or IDEA.

Method decryptBuffer
Description Decrypts the buffer passed as an argument, using the key associated

with the specified passphrase.
String sKey_ID Key_ID for the secret key.
char [] caPassphrase Passphrase protecting the key sKey_ID.

Arguments

byte [] bBuffer Buffer encrypted with encryptBuffer and
now to be decrypted.

Return
value

byte [] Decrypted buffer.

Notes:

This method must be used jointly with encryptBuffer to encrypt and decrypt buffers.
Here is the process:

• encryptBuffer: encrypts a buffer and returns the encrypted buffer preceded by
64 bits of Initialization Vector.

• decryptBuffer: decrypts a buffer encrypted using encryptBuffer, so the first

64 bits contain an IV.

SafeLogic SafeAPI V1.20 - User Guide 26

The IV represents the first 64 bits of the returned buffer. This concatenation is
completely transparent during normal encryption followed by later decryption of the
buffer.

5.7.3 Encrypting Buffers: Overloaded Methods With Key and IV Arguments

The SafeAPI methods for symmetric encryption/decryption of buffers are overloaded
to allow experienced users to manage the parameters of a symmetric encryption
directly:

• Key value in binary format.
• IV (Initialization Vector) value in binary format.

Method encryptBuffer
Description Encrypts the buffer passed as an argument, using the key and the IV

specified in byte form.
String

sAlgorithm

Encryption algorithm
(See "Table of Symmetric Encryption Algorithms")

byte [] bKey 128-bit key in binary format.
byte [] bIV The 64-bit IV (8 bytes) to be used.

Arguments

byte [] bBuffer Buffer to be encrypted.
Return
value

byte [] Encrypted buffer

Method decryptBuffer
Description Decrypts the buffer passed as an argument, using the key and the IV

specified in byte form.
String

sAlgorithm

Encryption algorithm
(See "Table of Symmetric Encryption Algorithms")

byte [] bKey 128-bit key in binary format.
byte [] bIV 64-bit IV (8 bytes) used to encrypt the buffer.

Arguments

byte [] bBuffer Buffer to be decrypted.
Return
value

byte [] Decrypted buffer.

Notes:

• The three algorithms are always used in CFB mode (Cipher Feedback).

• These overloaded methods are also used to test the operation of SafeAPI and
VB programs in comparison to test sets. (See the
"IMPLEMENTATION/CRYPTOGRAPHY FAQ" for more details.)

SafeLogic SafeAPI V1.20 - User Guide 27

5.7.4 Encrypting Files

Method encryptFile
Description Encrypts the file whose complete name (including drive and

directories) is passed as an argument, using the key associated with
the specified passphrase.
String sKey_ID Key_ID for the key.
char [] caPassphrase Passphrase protecting the key sKey_ID.
String sInputPath Complete name of the file to be encrypted.

Arguments

String sOutputPath Complete name of the encrypted file.

Notes:

• sInputPath and sOutputPath must be different.

• Reminder: The term complete name means the complete pathname of a file,

including the drive and directories.
• Windows NT/2000 example: c:\safelogic\lib\cryptix.jar
• Unix example: /home/safelogic/lib/cryptix.jar

Method decryptFile
Description Decrypts the file whose complete name is passed as an argument,

using the key associated with the specified passphrase.
String sKey_ID Key_ID for the key.
char [] caPassphrase Passphrase protecting the sKey_ID key.
String sInputPath Complete name of the file to be decrypted

Arguments

String sOutputPath Complete name of the decrypted file

Notes:

• sInputPath and sOutputPath must be different.

5.7.5 Table of Symmetric Encryption Algorithms

Algorithm Comments
Blowfish CFB (Cipher Feedback) mode.
CAST-128 CFB mode.
IDEA1 CFB mode.

Note: the algorithm name must appear exactly as shown above.

1 IDEA is patented by ASCOMM and requires a special license from SafeLogic to be used.

SafeLogic SafeAPI V1.20 - User Guide 28

5.8 Class CryptoAsym: Asymmetric Encryption and Signature

Methods

5.8.1 Generating a Pair of RSA Keys

Method genKeyPair
Description Generates a pair of RSA keys of the desired length (if valid) by

applying the specified algorithm to the provided seed. Returns the
pair of keys.
String

sAlgorithm

Asymmetric encryption algorithm:
• "RSA".

char [] caPassphrase Passphrase protecting the key.

int Length
Length of the key (in bits): must be a
multiple of 512 that is less than or equal to
4096.

byte [] bSeed Seed value.
String sEmail Reference email for the key.

Arguments

int lKeyIndex Index number for the key (optional).
Return value

Notes:

The file names for the files containing the two keys (public & private) are built from:

• The reference email.
• The index passed to genKeyPair.
• The string "RSA".
• The extension ".skf" for the private key.
• The extension ".pkf" for the public key.

The "Key ID" for the pair of keys is the lower-case generic name for the file, without
directories or extensions.

Key ID examples:

• user@domain.com_1_ rsa
• user@domain.com_2_ rsa

Before the private key is saved on the hard drive, it is encrypted using:

• The Blowfish symmetric algorithm.
• CFB mode.
• A 128-bit key which is the MD5 hash value for the passphrase parameter

passed to genKeyPair.

The private key is therefore encrypted and stored in a highly secure form on the hard
drive, and the passphrase is not stored.

SafeLogic SafeAPI V1.20 - User Guide 29

Reminder:
The directory for storing this file is defined by passing the KEY_DIRECTORY
parameter to the setParameter() method.

5.8.2 Encrypting Buffers With RSA

Method encryptBuffer
Description Encrypts a buffer with RSA, using the public key whose Key ID is

passed as an argument.
String sKey_ID Key_ID for the public key. Arguments
byte [] bBuffer Buffer to be encrypted with RSA.

Return
value

byte [] Encrypted buffer.

Notes:

The buffer encryption/decryption functions have the following characteristics in
SafeAPI Version 1.07:

• The maximum buffer size is 128 bits.
• The mode used is ECB (Electronic Code Book).
• The padding used is PKCS#7.

Method decryptBuffer
Description Decrypts a buffer encrypted using the RSA public key whose Key ID is

passed as an argument.
String sKey_ID Key_ID for the private key.

char [] caPassphrase
Passphrase corresponding to the private
key with the same Key ID used to encrypt
the buffer.

Arguments

byte [] bBuffer Buffer encrypted with encryptBuffer and
now to be decrypted.

Return
value

byte [] Decrypted buffer.

SafeLogic SafeAPI V1.20 - User Guide 30

5.8.3 Combination Asymmetric/Symmetric File Encryption With RSA:

Principles

Encrypting files with the RSA algorithm combines both asymmetric and symmetric
encryption. This method provides the benefits of asymmetric encryption
(public/private keys) while retaining the speed offered by symmetric algorithms.

When encrypting a file for a user for whom there is a public RSA key:

• The pseudo-random number generator creates a symmetric key called the
"session key". This will only be used to encrypt this file and will never be used
again.

• The file is encrypted using a symmetric algorithm and the session key.

• The session key is itself encrypted with the asymmetric algorithm (RSA), using

the public key for the user.

• The encrypted file + encrypted session key are merged into a new file.

The reverse procedure is followed to decrypt the file:

• The merged encryption file + session key is received.

• The encrypted session key is extracted and decrypted using the user's private
RSA key.

• The session key is then used to decrypt the file.

SafeLogic SafeAPI V1.20 - User Guide 31

5.8.4 Managing Recipient Lists

SafeAPI can handle file encryption for multiple users in one operation.

This is how it is done:

• Create a List of recipients (called the "List" below).
• Add RSA public key identifiers to the List. This corresponds to "adding

Recipients to the List".
• Encrypt the file in one operation, by passing the List name to an API function

as an argument. The file is then encrypted for all the Recipients.

Method createRecipients
Description Creates a List of recipients for an RSA file encryption.
Arguments String sListName Name of the List of recipients.

Method addRecipient
Description Adds a recipient to a List

String sListName Name of the List of recipients. Arguments
String sKey_ID Key_ID for the recipient's public key.

Return
value

Boolean

True: the recipient was added successfully
False: if not

SafeLogic SafeAPI V1.20 - User Guide 32

5.8.5 Asymmetric File Encryption

Method decryptFile
Description Encrypts a file using RSA, for the list of recipients passed as an

argument.
String sListName Name of the List of recipients.
String sInputPath Complete name of the file to be encrypted.

Arguments

String sOutputPath Complete name of the encrypted file to be
created.

Notes:

• sInputPath and sOutputPath must be different.

Method decryptFile
Description Decrypts a file encrypted using a public key and the method

decryptFile
String sKey_ID Key_ID for the decryption private key.
char [] caPassphrase Passphrase associated with the private key.
String sInputPath, Complete name of the encrypted file.

Arguments

String sOutputPath Complete name of the decrypted file to be
created.

5.8.6 Signature & Signature Verification

Notes:

• 1) The signature and signature verification methods are used in pairs:

Signature method Corresponding Verification Method
signBuffer() verifyBuffer()
signFile()
Version with complete file name

verifyFile()
Version with complete file name

rawSignFile()
Version with binary signature

rawVerifyFile()
Version with binary signature

encryptAndSign()
Asymmetric and signed encryption of the
file.

decryptAndSign()
Asymmetric decryption of a file and
verification of its signature.

• 2) signBuffer() and verifyBuffer() are used to sign/verify buffers.

• 3) signFile() and verifyFile() rely on a signature contained in a file.

SafeLogic SafeAPI V1.20 - User Guide 33

• 4) rawSignFile() and rawVerifyFile() work with a binary signature whose

management is left up to the programmer.

• 5) The encryptAndSign() / decryptAndSign() methods allow encryption +

signature in one operation. In this case, the signature is always stored in the
encrypted file.
The isFileSigned method is used to find out whether a file encrypted with
SafeAPI has also been signed with a private key.

Method signBuffer
Description Calculates and returns the signature associated with the specified

buffer, using the private key passed as a parameter.

String sKey_ID Identifier for the private key to be used to
sign.

char [] caPassphrase Passphrase for the private key

Arguments

byte [] Bbuffer Buffer to be signed
Return
value

byte [] Value of the signature (series of bits) for bBuffer.

Method verifyBuffer
Description Verifies whether a binary signature associated with a buffer is valid.

String sKey_ID Identifier for the public key corresponding to
the signature.

String BBuffer Complete name of the buffer to be verified.

Arguments

byte [] bSignature Signature for bBuffer.
Return
value

Boolean True: the signature was verified
 (bBuffer authenticated)
False: the signature was invalid.

Method rawSignFile
Description Calculates and returns the signature associated with the specified file,

using the private key passed as a parameter.

String sKey_ID Identifier for the private key to be used to
sign.

char [] caPassphrase Passphrase for the private key

Arguments

String sFilePath Complete name of the file to be signed.
Return
value

byte [] Value of the signature (series of bits)

SafeLogic SafeAPI V1.20 - User Guide 34

Method rawVerifyFile
Description Verifies whether a binary signature associated with a file is valid.

String sKey_ID Identifier for the public key corresponding to
the signature.

String sFilePath Complete name of the file to be verified.

Arguments

byte [] bSignature Signature for the FilePath file
Return
value

Boolean True: the signature was verified (file authenticated)
False: the signature was invalid.

Method signFile
Description Calculates and saves in a file the signature associated with the

specified file, using the private key passed as a parameter.

String sKey_ID Identifier for the private key to be used to
sign.

String caPassphrase Passphrase for the private key.

String sFilePath Complete pathname for the file to be
signed.

Arguments

String sSigFilePath Complete pathname for the file signature.

Method verifyFile
Description Verifies whether the signature associated with the file is valid.
 String sKey_ID Identifier for the public key corresponding to

the signature.

String FilePath Complete pathname for the file to be
verified.

Arguments

String sSigFilePath Complete pathname for the file containing
the signature for the FilePath file.

Return
value

Boolean True: the signature was verified (file authenticated)
False: the signature was invalid

SafeLogic SafeAPI V1.20 - User Guide 35

Method encryptAndSign
Description Signs the specified file using the private key, and encrypts it for the list

of recipients.

String sKey_ID Identifier for the public key corresponding to
the signature.

char [] caPassphrase Passphrase for the private key used for the
signature

String sListName Name of the List of recipients

String sInputPath Complete pathname for the file to be
processed

Arguments

String sOutputPath Complete pathname for the output file

Method decryptAndVerify
Description Decrypts the specified file using the private key, and verifies the

signature.
String sKey_ID Identifier for the private decryption key.
char [] caPassphrase Passphrase for the private decryption key.

String sSignKeyId Identifier for the public key corresponding to
the signature

String sInputPath Complete pathname for the encrypted file to
be processed

Arguments

String sOutputPath Complete pathname for the (unencrypted)
output file

Return
value

Int 1: the file was signed and was authenticated
-1: the file was signed but not authenticated
 0: the file was not signed

Method isFileSigned
Description Verifies that an encrypted file contains a signature.
Arguments String FilePath Complete pathname for the encrypted file.
Return
value

Boolean True: the encrypted file is signed
False: the encrypted file is not signed.

Method getSignKeyIdDigest
Description Returns the hash value of the identifier for the key used to sign the file.
Arguments String sFilePath Complete pathname for the file
Return
value

byte [] The hash value of the identifier for the sender's key

Note:

• For future use.

SafeLogic SafeAPI V1.20 - User Guide 36

5.9 Class CryptoAsymRawRSA: methods of asymmetric encryption
using “native” RSA keys

CryptoAsymRawRSA is intended for experienced users who want to use
advanced RSA functions.

Use of the CryptoAsym class is recommended in most cases.

The methods described in this chapter all use RSA keys in a “native” format, i.e. the
keys are expressed as numbers.

Note:
The values of the private keys are not protected in any of the methods in
chapter 5.9.

They must remain secret to ensure the security of the encryption.

5.9.1 Encrypting buffers with “native” RSA keys

Method encryptBufferRawKey
Description Encrypts a buffer with RSA, passing the “native” form of a public key

as an argument.

byte[] bN_Modulus
Public modulus N of the RSA key.
Number expressed in bits in twos
complement in big-Endian.

byte[] bE_Exponent
Public exponent E.
Number expressed in bits in twos
complement in big-Endian.

Arguments

byte[] bBuffer Buffer to be encrypted with RSA.
Return
value

byte[] Encrypted buffer.

Mode & Padding

The buffer encryption/decryption functions have the following characteristics:

• The mode used is ECB (Electronic Code Book).
• The padding used is PKCS#7.

SafeLogic SafeAPI V1.20 - User Guide 37

5.9.2 Decrypting buffers using “native” RSA keys

Method decryptBufferRawKey
Description Decrypts an RSA encrypted buffer, passing the “native” form of the

private key as an argument.

byte[] bD_Exponent

D, Private exponent to be kept secret.
Number expressed in bits in twos
complement in big-Endian.

byte[] bP_Factor

1st factor Private P to be kept secret. (prime
number).
Number expressed in bits in twos
complement in big-Endian.

byte[] bP_Factor

2nd factor Private Q to be kept secret. (prime
number).
Number expressed in bits in twos
complement in big-Endian.

Arguments

byte[] bBuffer RSA encrypted buffer to be decrypted.
Return
value

byte[] Decrypted buffer.

Note/Reminder:

The 3 values bD_Exponent, bP_Factor and bP_Factor are the “clear”
components of the private key and must remain confidential.

Mode & Padding

The buffer encryption/decryption functions have the following characteristics:

• The mode used is ECB (Electronic Code Book).
• The padding used is PKCS#7.

SafeLogic SafeAPI V1.20 - User Guide 38

5.9.2.1 Initializing and loading SafeAPI format RSA keys into memory

The two functions loadPublicKey and/or loadPrivateKey enable the extractions to
be prepared and must be launched prior to the other functions in order to access
the components.

Method loadPublicKey
Description Loads into memory the public key corresponding to a key generated

with SafeAPI.
Arguments String sKey_ID Key_ID of the public key.
Return
value

Method loadPrivateKey
Description Loads into memory the private key corresponding to a key generated

with SafeAPI.
String sKey_ID Key_ID of the private key. Arguments
char[] caPassphrase Passphrase protecting the key.

Return
value

5.9.2.2 Methods for getting components of RSA keys

Before launching the loadPublicKey and/or loadPrivateKey functions, the following
“get” type functions allow the various components of the RSA key pair to be retrieved
as a byte table or a hexadecimal string:

Method getPublicKeyExponent
Description Gets the public exponent E of the public key
Arguments None
Return
value

byte[] Public exponent E.
Number expressed in bits in twos complements in big-
Endian.

SafeLogic SafeAPI V1.20 - User Guide 39

Method getHexPublicKeyExponent
Description Gets the public exponent E of the public key as a hexadecimal string.
Arguments None
Return
value

String Public exponent E as a hexadecimal string.

Method getModulus
Description Gets the public modulus N of the RSA key
Arguments None
Return
value

byte[] Public modulus N of the RSA key.
Number expressed in bits in twos complement in big-Endian.

Method getHexModulus
Description Gets the public modulus N of the RSA key as a hexadecimal string.
Arguments None
Return
value

String Public modulus N of the RSA key as a hexadecimal string.

Method getPrivateKeyExponent
Description Gets the Private exponent D to be kept secret.
Arguments None
Return
value

byte[] D, Private exponent to be kept secret.
Number expressed in bits in twos complements in big-
Endian.

Method getHexPrivateKeyExponent
Description Gets the Private exponent D to be kept secret as a hexadecimal

string.
Arguments None
Return
value

String D, Private exponent to be kept secret as a hexadecimal
string.

Method getP
Description Gets the 1st factor Private P to be kept secret (prime number).

Number expressed in bits in twos complement in big-Endian.
Arguments None
Return
value

byte[] 1st factor Private P to be kept secret. (prime number).
Number expressed in bits in twos complement in big-Endian.

SafeLogic SafeAPI V1.20 - User Guide 40

Method getHexP
Description Gets the 1st factor Private P to be kept secret (prime number) as a

hexadecimal string.
Arguments None
Return
value

String 1st factor Private P to be kept secret (prime number) as a
hexadecimal string.

Method getQ
Description Gets the 2nd factor Private Q to be kept secret (prime number).

Number expressed in bits in twos complement in big-Endian.
Arguments None
Return
value

byte[] 1st factor Private P to be kept secret (prime number) as a
hexadecimal string.

Method getHexQ
Description Gets the 2nd factor Private Q to be kept secret (prime number) as a

hexadecimal string.
Arguments None
Return
value

String 2nd factor Private Q to be kept secret (prime number) as a
hexadecimal string.

Method getInverseOfQModP
Description Gets U, the mathematical inverse of Q modulo P to be kept secret.

Number expressed in bits in twos complement in big-Endian.
Arguments None
Return
value

byte[] U, inverse of Q modulo P to be kept secret.
Number expressed in bits in twos complement in big-Endian.

Method getHexInverseOfQModP
Description Gets U, inverse of Q modulo P to be kept secret as a hexadecimal

string.
Arguments None
Return String U, inverse of Q modulo P to be kept secret as a hexadecimal

string.

5.9.2.3 Full example of a Java implementation

A full example of exporting RSA keys as components and encrypting and decrypting
the buffer can be found in the program: RawRSAExemple.java in the samples
directory.

SafeLogic SafeAPI V1.20 - User Guide 41

5.9.3 Direct application of RSA encryption

CryptoAsymRawRSA allows RSA to be directly used on a buffer, by using the
various components of the key.

This direct use allows for “non-traditional” operations, not accepted by the other
SafeAPI methods:

• Encryption of a buffer with a private key.
• Decryption of a buffer with a public key.

Method rsaWithCrt
Description Directly applies the RSA algorithm to a buffer by using the components

of the private key.
rsaWithCrt uses the Chinese Remainder Theorem (CRT)

byte[] bD_Exponent

D, Private exponent to be kept secret.
Number expressed in bits in twos
complement in big-Endian.

Byte[] bP_Factor

1st factor Private P to be kept secret. (prime
number).
Number expressed in bits in twos
complement in big-Endian.

byte[] bP_Factor

2nd factor Private Q to be kept secret. (prime
number).
Number expressed in bits in twos
complement in big-Endian.

byte[] bU
U, inverse of Q modulo P to be kept secret.
Number expressed in bits in twos
complement in big-Endian.

Arguments

byte[] bBuffer Buffer to be encrypted using RSA.
Return
value

byte[] Buffer encrypted using RSA.

Note/Reminder:

The 4 values bD_Exponent, bP_Factor, bP_Factor and bU represent “clear”
components of the private key and must remain confidential.

SafeLogic SafeAPI V1.20 - User Guide 42

Method rsa
Description Directly applies the RSA algorithm to a buffer by using the components

of the public key.
rsa does not use the Chinese Remainder Theorem (CRT)

byte[] bN_Modulus
Public modulus N of the RSA key.
Number expressed in bits in twos
complements in big-Endian.

byte[] bE_Exponent
Public exponent E.
Number expressed in bits in twos
complement in big-Endian.

Arguments

byte[] bBuffer Buffer to be encrypted using RSA.
Return
value

byte[] Buffer encrypted using RSA.

Note for the two rsa methods:

• No mode is applied.
• The rsa methods break the buffer down into blocks of bytes of the same size

as the key divided by 8. For example, if it is a 2048 bit key, the resulting buffer
is made up of 2048 / 8 blocks = 256 bytes.

• Any encryption below the size of a block generates an encrypted block of the
same size as a block.

• Example: using a 2048 bit key, we want to apply RSA to a buffer of 1038
bytes. 1038 = 256 + 256 + 256 + 256 + 14. Each encrypted block will be 256
bytes long. The resulting buffer will thus be 1280 bytes = 256 + 256 + 256 +
256 + 256, the final 14 byte piece being topped up to 256 bytes after
encryption.

5.9.3.1 Full example of a Java implementation

A full example of exporting RSA keys as components and encrypting and decrypting
the buffer can be found in the program: TestRSA.java in the samples directory.

SafeLogic SafeAPI V1.20 - User Guide 43

5.10 Class CryptoDir: methods for encrypting directories

The methods of the CryptoDir class can be broken down into three main groups.

• 1) Methods related to the dynamic parameterization of the API.
• 3) Methods of symmetrically encrypting directories
• 3) Methods of asymmetrically encrypting directories.

5.10.1 Dynamic parameterization of CryptoDir

The dynamic parameterization of CryptoDir is done using the setParameter() and
getParameter() functions, described in 5.3.1 CryptoCommon :

There are additional parameters:

CryptoDir
parameter

Role & range of values

DIR_DELETE_LEVEL Type of file delete after encrypting the directory.
DELETE_NONE : no delete.
DELETE_SIMPLE : normal delete.
DELETE_WIPE_1 : level 1 wipe (weak)
DELETE_WIPE_2 : level 2 wipe (medium)
DELETE_WIPE_3 : level 3 wipe (strong)

VERBOSE Indicates if file encryption must be displayed on the system
screen.
True or False

NB_RETRY_WHEN_LOCK Number of successive attempts to encrypt a file locked by
another process.

SECONDS_PAUSE_WHEN_LOCK Number of seconds of pause between each attempt at
encrypting a file locked by another process.

5.10.2 List of the default parameter values

CryptoDir
parameter

Default values

DIR_DELETE_LEVEL DELETE_SIMPLE
VERBOSE True
NB_RETRY_WHEN_LOCK 3
SECONDS_PAUSE_WHEN_LOCK 1

SafeLogic SafeAPI V1.20 - User Guide 44

5.10.3 Symmetric encryption of directories

Method encryptDirWithPassphrase
Description Encrypts all the files in a directory. The encrypted files are placed in a

different output directory, to be specified.
The symmetric encryption key is generated dynamically by deriving it
from the passphrase.

String sAlgorithm
Algorithm to be used.
(Cf. the list of allowed values in
SAPIDOC].).

char[] caPassphrase Passphrase protecting the directory.
String sInputDir Full name of the directory to encrypt.

Arguments

String sOutputDir Full name of the output directory for the
encrypted files.

Notes:

• sInputDir and sOutputDir must be different.

• Reminder: The term full name means the full name of a directory with the

units.
• Windows example: c:\safelogic\lib
• Unix example : /home/safelogic/lib

• The files can be deleted from sInputDir depending on the value of the

DIR_DELETE_LEVEL parameter.

• The two parameters NB_RETRY_WHEN_LOCK and

SECONDS_PAUSE_WHEN_LOCK do not apply to this API.

SafeLogic SafeAPI V1.20 - User Guide 45

Method decryptDirWithPassphrase
Description Decrypts all the files in a directory. The encrypted files must have been

encrypted using encryptDirWithPassphrase.
The decrypted files are placed in a different output directory, to be
specified.

String sAlgorithm Algorithm to be used.
(Cf. the list of allowed values).

char[] caPassphrase
Passphrase protecting the directory (the
one that was used with
encryptDirWithPassphrase).

String sInputDir Full name of the directory to decrypt.

Arguments

String sOutputDir Full name of the output directory for the
decrypted files.

Notes:

• Cf. the notes to encryptDirWithPassphrase().

SafeLogic SafeAPI V1.20 - User Guide 46

Method encryptDir
Description Encrypts all the files in a directory. The encrypted files are placed in a

different output directory, to be specified.
encryptDir uses a symmetric key generated with
CryptoSym.genSecretKey()
String sKey_ID Key_ID of the key.
char[] caPassphrase Passphrase protecting the sKey_ID key.
String sInputDir Full name of the directory to be encrypted.

Arguments

String sOutputDir Full name of the output directory for the
encrypted files.

Notes:

• sInputDir and sOutputDir must be different.

• The files can be deleted from sInputDir depending on the value of the

DIR_DELETE_LEVEL parameter.

• The two parameters NB_RETRY_WHEN_LOCK and

SECONDS_PAUSE_WHEN_LOCK do not apply to this API.

Method decryptDir
Description Decrypts all the files in a directory. The encrypted files must have been

encrypted with encryptDir
The decrypted files are placed in a different output directory, to be
specified.
String sKey_ID Key_ID of the key.
char[] caPassphrase Passphrase protecting the sKey_ID key.
String sInputDir Full name of the directory to be decrypted.

Arguments

String sOutputDir Full name of the output directory for the
encrypted files.

Notes:

• Cf. the notes to encryptDir().

SafeLogic SafeAPI V1.20 - User Guide 47

5.10.4 Asymmetric directory encryption

Asymmetric directory encryption uses the principles of combination encryption and
of the management of recipient lists described in 5.8.4 Managing Recipient Lists

The encryption principles are the same as those applied for the asymmetric file
encryption:

• CryptoAsym.encryptFile().
• CryptoAsym.decryptFile().

In fact, for every file to be encrypted, asymEncryptDir() calls
CryptoAsym.encryptFile() and, for every file to be decrypted asymDecryptDir()
calls CryptoAsym.decryptFile(),

The functions asymEncryptDir() and asymDecryptDir() use RSA keys generated
by CryptoAsym.genKeyPair().

Method asymEncryptDir
Description Uses RSA to Encrypt all the files in a directory for a recipient list

passed as an argument.
The encrypted files are placed in a different output folder, to be
specified.
String sListName Name of the recipient list.
String sInputDir Full name of the directory to encrypt.

Arguments

String sOutputDir Full name of the output folder for the
encrypted files.

Notes:

• sInputPath and sOutputPath must be different.

• The files can be deleted from sInputDir depending on the value of the
DIR_DELETE_LEVEL parameter.

• The two parameters NB_RETRY_WHEN_LOCK and

SECONDS_PAUSE_WHEN_LOCK make it possible to define new attempts for
each file locked by another process.

SafeLogic SafeAPI V1.20 - User Guide 48

Method asymDecryptDir
Description Decrypts all the files in a directory. The encrypted files must have been

encrypted using encryptDir
The decrypted files are placed in a different output directory, to be
specified.
String sKey_ID Key_ID of the private encryption key.
char[] caPassphrase Passphrase associated with the private key.
String sInputDir Full name of the directory to be decrypted.

Arguments

String sOutputDir Full name of the output directory for the
decrypted files.

Notes:

• Cf. the notes to asymEncryptDir().

SafeLogic SafeAPI V1.20 - User Guide 49

6 Using The Methods

6.1 Using The Hashing and Error Handling Methods

There are three steps to follow when hashing a buffer:

• 1) First initialize the hash tool using hashDataBufferInit.

• 2) Then fill the buffer by successive calls to hashDataBuffer.

• 3) When all the information (bytes) has been sent to the buffer, calculate and
retrieve the hash value using hashDataBufferDigest.

Now that we have presented all the cryptography methods of the API, we will
describe the general mechanism to use when calling a cryptography function of the
API in order to include error handling.

For any action you perform, you must verify that the operation was successful. This is
done by calling isOperationOK and, if needed, diagnosing the problem using
getRegisteredError.

It is also possible to retrieve a complete account of the error using getRawError (this
is only recommended if the diagnosis returned by getRegisteredError indicates an
unknown error).

6.2 Using The Symmetric Encryption Methods

Encryption must be preceded by generating a key with genSecretKey.

The resulting secret key is stored in a file and associated with a "passphrase" that
protects it. The passphrase itself is converted into a key that is used to encrypt the
secret key.

The generated key is valid for an indefinite period. It is therefore possible to separate
the VB programs for key generation, encryption, and decryption by using the
methods:

• encryptBuffer or encryptFile for encryption.
• decryptBuffer or decryptFile for decryption.

SafeLogic SafeAPI V1.20 - User Guide 50

6.3 Using The Asymmetric Encryption Methods

First you must generate a binary file containing a series of random data. These data
are extremely important, as they are used as a pseudo-random database for the
generation of symmetric 128-bit session keys.

The API to use is createSeedFile.

The second step consists of generating a pair of RSA keys using genKeyPair.

These two RSA keys (private, public) are stored in two separate files. The private key
is symmetrically encrypted, and is associated with a passphrase that protects it and
must always remain confidential.

The next step consists of generating a list of recipients by using:

• createRecipients
• addRecipient

Then the encryption/decryption functions can be used:

• decryptFile
• decryptFile

as well as the signature and signature verification functions:

• signFile / rawSignFile
• verifyFile / rawVerifyFile

It is also possible to do asymmetric encryption + signature operations in one step:

• encryptAndSign
• decryptAndSign

See the examples described in detail later in this guide:

• Java program: TestPKI.java
• VB project: SafeAPI_VB

SafeLogic SafeAPI V1.20 - User Guide 51

6.4 Sample Java Programs

SafeAPI comes with sample Java programs. Some of these are run in command line
mode.

Name of sample Java
program

Description

TestHash.java Hashes a buffer.
TestHashFile.java Hashes a file.
TestSym.java • Generates symmetric keys with Blowfish, CAST-128, and

IDEA.
• Symmetric encryption of a buffer.
• Symmetric encryption of a file.

TestRSACrypt.java • Generates a pair of RSA keys.
• Asymmetric encryption/decryption of a buffer.
• Asymmetric encryption/decryption of a file.

TestRSASign.java • Signs a buffer.
• Signs a file (signature included or detached).
• Asymmetric encryption and signing of a file.

Notes:

• To run these programs, prefix their name with the Java package

com.safeapi.test

• Windows example:

c:\> java com.safeapi.test.TestHash

• Unix example:

$ java com.safeapi.test.TestHash

6.5 Visual Basic Examples: Complete SafeAPI_VB Project

SafeAPI comes with the complete Visual Basic 6.0 project SafeAPI_VB, which
contains a series of windows and procedures for generating a file of seed data,
generating symmetric or RSA keys, hashing a buffer or file, encrypting a file, etc.

Note: the programs, projects, VB windows, etc. are provided as examples only and
are not supported by SafeLogic.

SafeLogic SafeAPI V1.20 - User Guide 52

7 IMPLEMENTATION/CRYPTOGRAPHY FAQ

7.1 Purpose of this FAQ

This FAQ explains how to validate or "prove" the quality of the implementation of the
cryptography algorithms in SafeAPI. It assumes that you are familiar with basic
cryptography concepts.

7.2 How can I test the implementation of MD5?

RFC 1321 defines a set of tests for MD5.
See http://www.faqs.org/rfcs/rfc1321.html

Here is the complete set. The result corresponds to a conversion of the binary result
into a hexadecimal string:

MD5 ("") = d41d8cd98f00b204e9800998ecf8427e
MD5 ("a") = 0cc175b9c0f1b6a831c399e269772661
MD5 ("abc") = 900150983cd24fb0d6963f7d28e17f72
MD5 ("message digest") = f96b697d7cb7938d525a2f31aaf161d0
MD5 ("abcdefghijklmnopqrstuvwxyz") = c3fcd3d76192e4007dfb496cca67e13b
MD5 ("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789")

= d174ab98d277d9f5a5611c2c9f419d9f
MD5 ("123456789012345678901234567890123456789012345678901234567890123456
78901234567890") = 57edf4a22be3c955ac49da2e2107b67a

7.3 How can I test the implementation of SHA-1?

FIPS 180-1 defines two tests for SHA-1.
See http://www.itl.nist.gov/fipspubs/fip180-1.htm

SHA-1("abc") = "A9993E364706816ABA3E25717850C26C9CD0D89D
SHA-1("abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq")
 = "84983E441C3BD26EBAAE4AA1F95129E5E54670F1"

http://www.faqs.org/rfcs/rfc1321.html
http://www.itl.nist.gov/fipspubs/fip180-1.htm

SafeLogic SafeAPI V1.20 - User Guide 53

7.4 How can I test the implementation of Blowfish?

A test set recommended by the author of Blowfish is defined at
ftp://ftp.psy.uq.oz.au/pub/Crypto/Blowfish/test.data

Blowfish is also described in detail at:
http://www.counterpane.com/blowfish.html

In SafeAPI, Blowfish is implemented in CFB (Cipher Feedback) mode without
padding.

You can run the CFB test:

Object/data Hexadecimal value
Key in hexadecimal: 0123456789ABCDEFF0E1D2C3B4A59687
IV (Initialization
Vector) in hex:

FEDCBA9876543210

Unencrypted hex
string:

37363534333231204E6F77206973207468652074696D6520666F722000

Encrypted hex string: E73214A2822139CAF26ECF6D2EB9E76E3DA3DE04D1517200519D57A6C3

7.5 How can I test the implementation of CAST-128?

RFC 2144 defines a test set for CAST, but only in ECB mode.
See http://www.faqs.org/rfcs/rfc2144.html.

CAST-128 is implemented in CFB mode in SafeAPI, so there is no "standard" test
set.

ftp://ftp.psy.uq.oz.au/pub/Crypto/Blowfish/test.data
http://www.counterpane.com/blowfish.html
http://www.faqs.org/rfcs/rfc2144.html

SafeLogic SafeAPI V1.20 - User Guide 54

7.6 How can I test the implementation of IDEA?

The IDEA tests are defined in a file that can be downloaded from ASCOM at:
http://www.ascom.ch/infosec/downloads.html

IDEA is implemented in CFB in SafeAPI. Here are two tests taken from the test set
for CFB mode:

Object/data Hexadecimal value
Hexadecimal key: 729A27ED8F5C3E8BAF16560D14C90B43
IV (Initialization
Vector) in hex:

C121A1B050D8286C

Test 1
String C1
unencrypted hex:

D53FABBF94FF8B5F

String C1
encrypted hex:

E42323CAF932B933

Test 2
String C2
unencrypted hex:

94FF8B5F

String C2
encrypted hex:

A5E3032A

7.7 How are pseudo-random numbers generated with SafeAPI?

The pseudo-random numbers are generated using the ANSI X9.17 algorithm.

X9.17 is a powerful random number generator that takes a pair of values (random
value, key) and encrypts it using a key provided by the user and a symmetric
algorithm. It produces a new pair (random value, key) that cannot be predicted by an
attacker.

7.8 How is the IV generated in CFB with SafeAPI?

The IV (Initialization Vector) for CFB mode is generated using the ANSI X9.17
algorithm.

http://www.ascom.ch/infosec/downloads.html

SafeLogic SafeAPI V1.20 - User Guide 55

7.9 How are the secret keys stored?

Before the secret key is saved on the hard drive, it is encrypted using:

• The algorithm selected by the user in the API: Blowfish, CAST-128, IDEA.
• CFB mode.
• A 128-bit key that is the MD5 hash value of the passphrase parameter passed

to genSecretKey.

The secret keys are never stored unencrypted on the hard drive.

7.10 How are the RSA private keys stored?

Before the private key is saved on the hard drive, it is encrypted using:

• The Blowfish algorithm.
• CFB mode.
• A 128-bit key that is the MD5 hash value of the passphrase parameter passed

to genKeyPair.

The RSA private keys are never stored unencrypted on the hard drive.

SafeLogic SafeAPI V1.20 - User Guide 56

8 SUPPORT

If you have any technical questions, contact us at:

SafeLogic
27/29, rue Raffet
75016 Paris
Tel : (33) (0)1 45 72 25 15
Fax: (33) (0)1 45 72 14 06
E mail: contact@safelogic.com
Web : http://www.safelogic.com

mailto:info@safelogic.com
http://www.safelogic.com/

	INTRODUCTION
	Contents of This Guide
	Intended Audience
	Environment

	Installing SafeAPI
	Installing the JDK 1.4 from Sun Microsystems.
	Installing the SafeAPI binary files
	Standard installation
	Customized installation

	LICENSE FILE
	Updating the Java CLASSPATH
	Windows NT/2000/XP Classpath
	Unix/Linux classpath

	DLL installation (Windows)
	VERIFYING AND TESTING THE INSTALLATION
	Javadoc
	Javadoc on line

	Configuring the Technical Environment in Windows
	General Information
	Example: Microsoft Visual Basic 6.0

	USING SAFEAPI
	Classes
	List of SafeAPI classes
	List of SafeAPI classes per License Type

	CLASS REFERENCE MANUEL
	Class Convert: String Conversion Methods
	Class SeedBox: Visual Methods for Generating Seeds
	Class CryptoCommon: common methods of CryptoXxx classes
	CryptoCommon : Parameters setting API
	List of Modifiable Parameters
	List of the Parameter Default Values
	Error Detection Methods

	Methods for Creating Seeds or Random Values
	Initial Creation of a File of Random Numbers (seed file)
	Dynamic Seed Generation

	Other Methods
	Class CryptoHash: Hash Methods
	Hashing a Buffer
	Hashing a File
	Hashing a small size Buffer

	Class CryptoSym: Symmetric Encryption Methods
	Generating a Secret Key
	Encrypting a Buffer
	Encrypting Buffers: Overloaded Methods With Key and IV Arguments
	Encrypting Files
	Table of Symmetric Encryption Algorithms

	Class CryptoAsym: Asymmetric Encryption and Signature Methods
	Generating a Pair of RSA Keys
	Encrypting Buffers With RSA
	Combination Asymmetric/Symmetric File Encryption With RSA: Principles
	Managing Recipient Lists
	Asymmetric File Encryption
	Signature & Signature Verification

	Class CryptoAsymRawRSA: methods of asymmetric encryption using “native” RSA keys
	Encrypting buffers with “native” RSA keys
	Decrypting buffers using “native” RSA keys
	Initializing and loading SafeAPI format RSA keys into memory
	Methods for getting components of RSA keys
	Full example of a Java implementation

	Direct application of RSA encryption
	Full example of a Java implementation

	Class CryptoDir: methods for encrypting directories
	Dynamic parameterization of CryptoDir
	List of the default parameter values
	Symmetric encryption of directories
	Asymmetric directory encryption

	Using The Methods
	Using The Hashing and Error Handling Methods
	Using The Symmetric Encryption Methods
	Using The Asymmetric Encryption Methods
	Sample Java Programs
	Visual Basic Examples: Complete SafeAPI_VB Project

	IMPLEMENTATION/CRYPTOGRAPHY FAQ
	Purpose of this FAQ
	How can I test the implementation of MD5?
	How can I test the implementation of SHA-1?
	How can I test the implementation of Blowfish?
	How can I test the implementation of CAST-128?
	How can I test the implementation of IDEA?
	How are pseudo-random numbers generated with SafeAPI?
	How is the IV generated in CFB with SafeAPI?
	How are the secret keys stored?
	How are the RSA private keys stored?

	SUPPORT

