PreC

A General C/C++ Preprocessor
1. Introduction

This section describes what is PreC and how to use it.

1.1 Introduction to PreC

PreC is a macro preprocessor in the sense that it copies its input to its output expanding macros as it foes.. The unique feature of PreC is that its macro are actually written in standard C code, thus giving the use the entire power if C++ programming at the preprocessing stage.

Actually the input source is divided into two portions both written in C one is the preprocessor command written in C++ and the other is the standard C program. As such the compilation stage is done in two steps. First the preprocessor code is compiler and run and expanded (using the C compiler itself) and then the resulting program is compiler and run.

At the end of this documents a few examples are added to demonstrate the power of PreC.

2. Using PreC

The format for invoking is:

gprec [options]

Or

mprec [options]

All options begin with a ‘=’.

If no options are supplied an help summary is printed on the standard output and the program exits

 2.1 Command line options

-c<input file>

The input file name. This is a C program which contains PreC macros

-o<output file>

name of the final output file with the macros expanded. The default <input file>_new.C

-O<intermediary executable name>

Second pass program name. PreC generates an internal executable which is run to generated the source with the expanded macros. If we want to keep this intermediary program a name should be given to it.

-m<intermediary source file>

Name of intermediary source files used to generate the final output. Only the stem is specified, the filed will be named: <intermediary source file>_C.C and <intermediary source file>_M.mac

-M<list of arguments>

The list of arguments is passed to the program and can be used in the preprocessing step. The format is “-m <arg1> <arg2> …..”

-l

Generates line numbers in the outout file

-t<taget>

Name of the target compiler. The supported compilers are:

GCC – for the Gnu C/C|| compiler

MSC – for the Microsoft C++ compiler

The target compiler is used in the intermediate step to compile the intermediary source

Additional compiler can be defined using a configuration file.

2.2 PreC syntax

The PreC preprocessor uses actual C++ syntax for its preprocessor

ode. A special prefix is used to separate between the preprocessor code

nd the C++ code.

PreC support three types of code:

· A block of code used to define variables and functions to be used in the preprocessing stage. This block is generated by using the following format:

##MSTART

 standard C++ code which can contain deflations and functions with their full body.

##MEND

The functions and variables defined in this block are moved to the start of the program and can be used everywhere in macro code.

<code>

This construct defines a macro line. The <code> is any valid C++ code.

The preprocessor leaves this code at the place it is written and executes it in the preprocessing stage.

##<string>##

The string is any valid C expression which is evaluated at the preprocessing step. The result of the evaluation replaces the original string in the generated code

In addition the preprocessor code can include the following variables:

$n – where n is a number ans specifies the n-th parameter from the –M option

$<variable> where <variable> is an environment variable and is replaced by its value.

##.string##

The string is any valid C expression. The expression is evaluated only. The idea is to write an expression which writes directly to the file stdcom. The file stdcom is actually the file to which the final output is written. In this way the user can write directly to the output file. An example showing how this can be used is given in tsort1.C.

In this example an integer array is initialized. To ensure the initialization values are sorted a function ssort is called at compile time with the initialization values and their number. The function sorts the values and writes them directly to stdcom. Ad a result the initialization values get sorted in the generated file.

This avoid the sorting errors which might have results from a manual sorting. Doing the sorting at run time will increase the run time each tiem the program is used, Doing the sorting at compile time will only increase compilation time once.

$n

During the preprocessing time this expression refers to the preprocessor argument n (n is an integer)

stdcom

.This variable is predefined as the result file used by the preprocessor.

2.3 Examples

Example 1

This example demonstrates usage of preprocessor expression, statements and functions

#include <stdio.h>

##MSTART

#include <string.h>

char *fh(char *w)

{

 static char rs[100];

 strcpy(rs, "\"");

 strcat(rs,"Hello ");

 strcat(rs,w);

 strcat(rs, "\"");

 return rs;

}

##MEND

// Comment1

char x[3];

main() // Comment2

{

##char *Adds[3] = {"World", "Avi", "Meirav"};

##char Letter[4] = "abc";

##float f[3] = {10.1, 20.2, 30.3};

##double d[3] = {10.1e+7,20.2e+7,30.3e+7};

##int i;

 char AA = 'a';

 char a,b,c;

##for(i=0; (i<3); i++) {

 printf("LOOP %d: %g %g %s\n",##i##,##f[i]##,##d[i]##,##fh(Adds[i])##);

 ##Letter[i]##='A'+##i##;

##}

 printf("WE ARE DONE\n");

}

This example contains a macro function fh a macro line with a for statements executing 3 times and some macro strings.

The resulting program after substitution is:

#line 1 test13.C

#include <stdio.h>

#line 14 test13.C

// Comment1

char x[3];

main() // Comment2

{

#line 23 test13.C

 char AA = 'a';

 char a,b,c;

#line 27 test13.C

printf("LOOP %d: %g %g %s\n",0,10.1,1.01e+08,"Hello World"); a='A'+0;

#line 27 test13.C

 printf("LOOP %d: %g %g %s\n",1,20.2,2.02e+08,"Hello Avi");

 b='A'+1;

#line 27 test13.C

 printf("LOOP %d: %g %g %s\n",2,30.3,3.03e+08,"Hello Meirav");

 c='A'+2;

#line 30 test13.C

 printf("WE ARE DONE\n");

}

As the preprocessor was run with the –t argument the #line directives were inserted. This keep synchronized with the original code.

Note that the ##for loop was run 3 times and each time the two C source lines were generated with different value for “i” giving three different expansions.

This example should demonstrate the power of this preprocessor.

Example 2

The next example shows how a preprocessor sort function ensures that the initialization of an array is sorted:

#include <stdio.h>

##MSTART

#include <string.h>

#include <stdlib.h>

#include <stdarg.h>

void ssort(int size,...)

{

 int *A;

 int i, j, increment,temp;

 increment = size / 2;

 va_list argptr;

 va_start(argptr,size);

 A = (int *) malloc(sizeof(int) * size);

 for (i=0; (i<size); i++) {

 A[i] = va_arg(argptr,int);

 }

 while (increment > 0)

 {

 for (i = increment; i < size; i++)

 {

 j = i;

 temp = A[i];

 while ((j >= increment) && (A[j-increment] > temp))

 { A[j] = A[j - increment];

 j = j - increment;

 }

 A[j] = temp;

 }

 if (increment == 2)

 increment = 1;

 else

 increment = (int) (increment / 2.2);

 }

 for (i=0; (i<size-1); i++) {

 fprintf(stdcom, "%d,", A[i]);

 }

 fprintf(stdcom,"%d", A[size-1]);

 free(A);

 return;

}

##MEND

int main()

{

 int A[] = {##.ssort(7,50, 20, 30,10,1,0,100);##};

int i;

 for (i=0; (i<7); i++){

 printf("A[%d]=%d\n", i, A[i]);

 }

}

Here is the resulting program

#line 1 "tsort1.C"

#include <stdio.h>

#line 42 "tsort1.C"

int main()

{

 int A[] = {0,1,10,20,30,50,100};

 int i;

 for (i=0; (i<7); i++){

 printf("A[%d]=%d\n", i, A[i]);

 }

}

Example 3

The distribution file contains another example tcrc.C.

This demonstrates protection of important data.

Assume there is a set of variables that contain some data that should not be changed by the user. One way is to declare them as constants but this can be overcome by some program bugs. So the demo computes and sets a variable that contains a CRC of the variables. This CRC can be computed at run time and compared with the pre computed CRC.

Note the sorted initialization of “A”.

2.3 PreC Compiler configurationn file (config.cfg)

The configuration file can be used to add supported for additional C compilers

For each compiler the following lines are included in the file:

#<compiler> [SRC=extension] [OBJ=extension] [EXE-extension]

COMPILER=<compiler executable< [SRC] [OBJ] [EXE]

LINE=<command line>

LINKER=<linker executable> [SRC] [OBJ] [EXE]

LINE=<command line>

<compiler> is a code used to identify the compiler by PreC.

The following arguments identify the extensions used for the source file {SRC=) , object file (OBJ-) and executable file (EXE)

The COMPILER line identify the compiler executable (the command used to invoke it full path) and the type of files used by the compiler in the order they appear on the command line. Add any of SRC, OBJ, EXE if the compiler needs on its command line the source object or executable file names.

Next LINE= line contains the full compiler invocation line. The places were the compiler file arguments should be supplied are marked by the %s string.

PreC replaces the %s string by the actual name according to the COMPILER command and #<compiler> command.

Next the following LINKER= and LINE= lines are similar to the lines specified for the compiler and used to specify the linker and its command line if needed. If the compiler invokes the linker by itself this lines are not needed.

Here is an example for the GCC compiler under cygwin:

#GCC SRC=C OBJ= EXE=EXE

COMPILER=\Cygwin\bin\gcc.exe SRC EXE

LINE=gcc.exe %s –o %s

Note that the compiler does not need an object file name so OBJ= is specified.

The compiler need as file names the names of the input source and output executable only and invokes the linker by itself.

3. Shareware restrictions

The shareware version of PreC supports only the GCC compiler and thus needs to be run under cygwin or at least the cygwin DLL.

It does not support additional compiler and the compiler configuration file.

A suggested donation of 30$ will provide you with the full version supporting also the Microsoft C++ compiler and config.cfg file.

Please send you donation to:

Efrati (Zehavi)

P.O.B 126

Naharya 22421

Israel

Please add the filled registration form so that I can send you the full version.

In addition if you are interested in the source code please send me a note

Users that buy the full version will be entitled also to my support and be given an email address for it.

In addition to my support I will be thankful for your support of my work and encourage me to develop additional ideas, which are on my queue.

This is actually my first try with the shareware distribution and your encouragement will be very much appreciated (helping me support my family and develop the code I like). You will also be notified of additional updates or tools I develop.

I would like to thank you very much for trying this tool.

