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Introduction

This tutorial is an extension to my article on building VC

clients for VB ActiveX DLLs. Having read such an  article, the

question about handling events naturally comes to the

reader's mind.

Here I'm going to show you how to handle custom events

generated in VB ActiveX components in a Visual C++ client.

First we are going to build a MFC client and then turn our

attention to creating an ATL client. Doing all of this is not

tough at all, as you shall see. A framework like MFC makes it

very easy for the programmer to receive event notifications

from an ActiveX code component. A word before we move

on, I assume that the reader is conversant with VB ActiveX

technology, Automation and MFC COM and IDL (Interface

Definition Language).

VB ActiveX Components

A VB ActiveX component is a unit of code that follows the

COM specification for providing objects. It exposes much of

its functionality through one or more interfaces. These

software components have a high reusability factor.

As the component needs to communicate with the client,

they can be implemented as an in-process (read DLL)

component and an out-process (read EXE) component.

In an in-process component (ActiveX DLL components), the

communication between the server and the client is

implemented in the address space of the client application.

Though this makes them faster than ActiveX EXE

components, who need to be loaded in their own address

space, the biggest drawback is that a faulty DLL will crash

the client, and in turn, the object. That tends to bring

everybody down.:-)

VB Events

An event can be simply defined as something that occurs

during the applications lifetime. Events allow a class to

communicate to other classes and programs. A component

raises an event to notify the client about the completion of

some task. This event can be caught by the client, and the

client can respond to the event as it sees fit.

Custom events provide event-handling capabilities to classes

and components. The object that generates the event is

known as the event source and the object that responds to

an event is known as the event sink. First, we are going to

fire a custom event from a VB ActiveX DLL and handle the

notification in an MFC client. In other words, we have to build

an event sink in an MFC client that responds to events

generated by a VB ActiveX component, which acts as the

event source. The code in the event sink is executed when

the event is fired.
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To declare a custom event called evtTaskDone in VB, use
the Event keyword in the General Declarations section of a

class module like:

 Collapse

Public Event evtTaskDone()

This custom event can then be fire by using the

RaiseEvent keyword like:

 Collapse

RaiseEvent evtTaskDone

With all that in mind, we now roll up our sleeves and dig into

some code. First, we are going to build a VB ActiveX DLL that

is the source of the event.

Building the event source

Fire up VB and in the New Project dialog, choose ActiveX

DLL and click Open. VB creates a new DLL component

project called Project1, having a single class Class1. Go to

Project->Properties and set the Project Name as VBEvents.

In the Project Explorer View, right-click on Class1 and choose

to remove it from the project. Note: We could also have

chosen to use this class, but then we wouldn't have seen the

VB Class Builder.

Now right-click again on the Project Explorer View and add a

single Class Module to the project. In the Add Class

Module dialog, choose VB Class Builder and click on Open.

In Class Builder, go to File->New->Class and add a new

class called clsEventSrc Accept the default values and
click on OK. Next, go to File->New->Event and add a single

event to this class called evtNotify. Update all the
changes to the project and close the Class Builder window.

Next, click on Tools->Add Procedure and add a new

procedure to the clsEventSrc class called prcFireEvent

to the class you just created like:

 Collapse

Public Sub prcFireEvent()

RaiseEvent evtNotify

End Sub

The procedure simply fires our event. Save everything and go

to File->Make to build VBEvents.dll and register the

component.

Building the MFC client

Our MFC client, is a plain old Appwizard generated Dialog-

based application with additional Automation support. As

usual, open VC++ 6.0 and create a new MFC Appwizard EXE

project called MFCClient. Hit Build to build the project, and

take a break from all that hard work!

The OLE/COM Object Viewer is a nifty little tool that is

shipped along with Visual C++ 6.0. It will help us generate

the IDL file for the DLL component. Go to Tools->OLE/COM

Object Viewer and open this tool. Next, in OLE/COM Object

Viewer, click on File->View Typelib and navigate to the

VBEvent.dll file that we have previously built. Ready for some

magic? Click on Open and open up ITypeLib Viewer Can you

can view the IDL file? Whoa! Save the file through File-

>Save As, as VBEvents.IDL and close the tool. We have no

need for it at present.

Next in our VC++ project, add this IDL file to the project. In

FileView, right click on the IDL file and choose Settings. In

the MIDL tab, set the Output header file name to

VBEvents.h and the UUID filename to VBEvents_i.c. Also

deselect the MkTyplib compatible option.

Save everything and in FileView, right-click on the

VBEvents.IDL file and choose Compile. This will build the

typelibrary and generate the necessary files.

Examine the MIDL generated VBEvents_i.c file. It contains all

the UUID definitions that the client can use to build a sink

object. In VBEvents.h, notice the dual interface
_clsEventSrc. The component's dispinterface
__clsEventSrc is identified by DIID___clsEvent. This is
the event source for out custom event.
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The next step is to add an sink object to connect to the

source event. Fortunately, for us, MFC makes the task of

building an event sink as easy as 1-2-3 (and well,4-5-6) With

a couple of MFC macros, you can delegate much of the

intricacy involved behind building a sink to MFC. First, add a

new CCmdTarget derived class to the project called
MFCSink. In the ClassWizard choose to select the

Automation option. This is our sink object with Automation

support.

Then import the server's typelib in the client with #import. If

you haven't read my previous artic le, read it here. Otherwise,

go right ahead and use code like:

 Collapse

#import "VBEvents.dll" rename_namespace("MFCClient")

using namespace MFCClient;

There's nothing new to this code. While you are there in

stdafx.h, also #include the afxctl.h file

Next, open MFCSink.cpp and modify the INTERFACE_PART

macro so that the second parameter (IID) is the IID of the

event source, in our case DIID___clsEventSrc. Your
interface map should look like:

 Collapse

BEGIN_INTERFACE_MAP(MFCSink, CCmdTarget)

INTERFACE_PART(MFCSink, DIID___clsEventSrc, Dispatch)

END_INTERFACE_MAP()

Next, in the DISPATCH Map of the MFCSink class add a
DISP_FUNCTION_ID macro for each of the events defined
in the source interface that you want to handle. My
DISPATCH Map looks like:

 Collapse

BEGIN_DISPATCH_MAP(MFCSink, CCmdTarget)

 //{{AFX_DISPATCH_MAP(MFCSink)

 DISP_FUNCTION_ID(MFCSink, "evtNotify",1,evtNotify, VT_EMPTY, VTS_NONE)

 //}}AFX_DISPATCH_MAP

END_DISPATCH_MAP()

In Classview, right-click on the IMFCSink interface and add
a single Method evtNotify(). Notice, that as per our
DISPATCH Map, this method takes no parameters and returns

a void. Our implementation of this method displays a simple
MessageBox and looks like:

 Collapse

void MFCSink::evtNotify()

{

// TODO: Add your dispatch handler code here

AfxMessageBox("Event notification handled in MFC client");

}

All that remains for us to do is hook up and terminate the

connection appropriately in the client code. MFC makes this

job very easy with AfxConnectionAdvise() and

correspondingly AfxConnectionUnadvise(). If you are
not familiar with these functions, now would be a good time

to look up their documentation.

Moving on, declare three variables in the dialog class header

as :

 Collapse

_clsEventSrc *m_pSrc;

MFCSink *m_pSink;

DWORD m_dwCookie;

The first is a pointer to the interface through which we shall

fire the event. The second is a pointer to the sink object.

Lastly, the m_dwCookie variable is a cookie that stores the

number of connections that has been established. We'll need

this when we want to disconnect from the event source. In

our case, we set this to 1 in the dialog class constructor.

Don't forget to #include the VBEvents_i.c  file. The code to
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establish the connection in the dialog's OnInitDialog()

member function looks like:

 Collapse

CoInitialize(NULL);  /*Initialize COM system*/

m_pSink=new MFCSink; /*create an instance of the sink object*/

/*create source object*/

HRESULT hr=CoCreateInstance(CLSID_clsEventSrc,NULL,CLSCTX_INPROC_SERVER,IID_IDispatch,(

if(SUCCEEDED(hr))

 LPUNKNOWN m_pUnk=m_pSink->GetIDispatch(FALSE);

if(SUCCEEDED(hr))

{

 /*establish the connection*/

 if (AfxConnectionAdvise(m_pSrc,DIID___clsEventSrc,m_pUnk,FALSE,&m_dwCookie))

  return TRUE;

 else

  return FALSE;

}

else

 return FALSE;

As we have setup a connection, we also need to disconnect

when the dialog is destroyed. We can do that in the dialog's
OnDestroy(). In ClassView, right-click the dialog class and
Add a Windows message handler to handle WM_DESTROY

messages. In the handler, add the following code to

successfully disconnect.

 Collapse

LPUNKNOWN m_pUnk=m_pSink->GetIDispatch(FALSE);

AfxConnectionUnadvise(m_pSrc,DIID___clsEventSrc,m_pUnk,FALSE,m_dwCookie);

if(m_pSink!=NULL)

{

 delete m_pSink; /*the sink destructor must be public or compiler will complain*/

 m_pSink=NULL;

 m_pSrc=NULL;

}

With everything in place, we now need to fire the event.

Simply call:

 Collapse

m_pSrc->prcFireEvent();

anywhere in your code where you want to fire the event.

ATL Client

Building a pure ATL client means a little more typing than the

MFC client. But it's a lot easier than creating connectable

objects in raw C++. Remember, that the sink has to support
IDispatch. So that means at a minimum, implementing 7
methods.( 3 for IUnknown and 4 for IDispatch). To our
relief, ATL provides the IDispEventSimpleImpl<> and
IDispEventImpl<> template classes that helps us in
quickly creating dispinterface sink objects. These is a
host of information and code available for creating ATL sinks

for dispinterface based source objects that you might
want to lookup. Relevant Microsoft KB Articles Q:181277,

Q:181845 and Q:194179

Back to the task at hand, to make our client very efficient,

we'll use an IDispEventSimpleImpl derived class. First
create a new ATL/COM AppWizard generated EXE project

called ATLClient. To this add a dialog called
ATLClientDlg. The dialog has two buttons, one to setup
the connection and the other to fire the event. Next import

te server's typelib with #import as described in the MFC

client section above. Moving on to the sink object, the

declaration looks like:

 Collapse

#define IDC_SRCOBJ 1

static _ATL_FUNC_INFO OnEventInfo = {CC_STDCALL, VT_EMPTY, VT_NULL};

class CSinkObj : public IDispEventSimpleImpl&ltIDC_SRCOBJ, CSinkObj, &__uuidof(__clsEventSrc)&gt

{

public:

 HWND m_hWndList;
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 CSinkObj(HWND hWnd = NULL) : m_hWndList(hWnd)

 {

 }

BEGIN_SINK_MAP(CSinkObj)

 //Make sure the Event Handlers have __stdcall calling convention

 SINK_ENTRY_INFO(IDC_SRCOBJ, __uuidof(__clsEventSrc), 

END_SINK_MAP()

 // Event handler 

 HRESULT __stdcall evtNotify()

 {

  // output string to list box

  TCHAR buf[80];

  wsprintf(buf, "Sink : Notification Event Received"

  AtlTrace("\n%s",buf);

  return S_OK;

 }

};

All I have done is add a sink map to the
IDispEventSimpleImpl-derived class and then add a sink
entry corresponding to each event of a source interface that

I would like to handle. The ATL_FUNC_INFO structure helps
us pass parameters to event handlers. In our event handler

however, we do nothing fancy. Just a simple debug message

would do.

In the dialog class, add variables:

 Collapse

private:

 CSinkObj* m_pSink;

 _clsEventSrc *pEvent;

The dialog class's OnConnect() looks like:

 Collapse

LRESULT OnConnect(UINT,WORD,HWND hWndCtrl,BOOL& bHandled)

{

    m_pSink=new CSinkObj(hWndCtrl);

    HRESULT hr=CoCreateInstance(CLSID_clsEventSrc,NULL,CLSCTX_INPROC_SERVER,

                                __uuidof(_clsEventSrc),(void

    if(SUCCEEDED(hr))

    {

        m_pSink->DispEventAdvise(pEvent);

    }

    return hr;

}

As before, call:

 Collapse

pEvent->prcFireEvent();

when you want to fire the event. Don't forget to use
DispEventUnadvise() to disconnect when the dialog is
destroyed.

That's it! We have built both an MFC and an ATL client that

responds to events generated by a VB ActiveX DLL code

component. The code and project files were built with Visual

C++ 6.0 SP3 under Win95.

I have included another project VBTimer consisting of a VB

ActiveX DLL and respective ATL client project files. This

project does something a little more sophisticated than our

first VB DLL, which fires an event without any parameters.

The ActiveX DLL implements a VB Timer that fires an event

with an single parameter (timer count) after every 1 second

interval. This event is caught by the ATL client that displays

the timer count in the output window.
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