
6,283,541 members and
growing! (17,904 online)

Email Password Sign in Join

gfedcb Remember me? Lost your password?

Platforms, Frameworks & Libraries » COM / COM+ » ActiveX
Beginner

Handling VB ActiveX Events in
Visual C++ client
By Amit Dey

This article shows how to handle custom events generated in a
VB ActiveX component in a Visual C++ client.

VC6Win2K, MFC, ATL, COM, Dev

Posted: 8 May 2001

Views: 185,393

Bookmarked: 69 times

 Search 6Articles Go! A dvanced Search

Print

Report
 Share

 Discuss

 Email

22 votes for this article.

Popularity: 6.35 Rating: 4.73 out of 5 1 2 3 4 5

Download source files - 86 Kb

Introduction

This tutorial is an extension to my article on building VC

clients for VB ActiveX DLLs. Having read such an article, the

question about handling events naturally comes to the

reader's mind.

Here I'm going to show you how to handle custom events

generated in VB ActiveX components in a Visual C++ client.

First we are going to build a MFC client and then turn our

attention to creating an ATL client. Doing all of this is not

tough at all, as you shall see. A framework like MFC makes it

very easy for the programmer to receive event notifications

from an ActiveX code component. A word before we move

on, I assume that the reader is conversant with VB ActiveX

technology, Automation and MFC COM and IDL (Interface

Definition Language).

VB ActiveX Components

A VB ActiveX component is a unit of code that follows the

COM specification for providing objects. It exposes much of

its functionality through one or more interfaces. These

software components have a high reusability factor.

As the component needs to communicate with the client,

they can be implemented as an in-process (read DLL)

component and an out-process (read EXE) component.

In an in-process component (ActiveX DLL components), the

communication between the server and the client is

implemented in the address space of the client application.

Though this makes them faster than ActiveX EXE

components, who need to be loaded in their own address

space, the biggest drawback is that a faulty DLL will crash

the client, and in turn, the object. That tends to bring

everybody down.:-)

VB Events

An event can be simply defined as something that occurs

during the applications lifetime. Events allow a class to

communicate to other classes and programs. A component

raises an event to notify the client about the completion of

some task. This event can be caught by the client, and the

client can respond to the event as it sees fit.

Custom events provide event-handling capabilities to classes

and components. The object that generates the event is

known as the event source and the object that responds to

an event is known as the event sink. First, we are going to

fire a custom event from a VB ActiveX DLL and handle the

notification in an MFC client. In other words, we have to build

an event sink in an MFC client that responds to events

generated by a VB ActiveX component, which acts as the

event source. The code in the event sink is executed when

the event is fired.

ANNOUNCEMENTS

Monthly Competition

CHAPTERS

Desktop Development

Web Development

Enterprise Systems

Multimedia

Database

Platforms, Frameworks &

Libraries

Languages

General Programming

Graphics / Design

Development Lifecycle

General Reading

Third Party Products

SERVICES

Product Catalog

Code-signing Certificates

Job Board

CodeProject VS2008 Addin

FEATURE ZONES

Product Showcase

WhitePapers / Webcasts

IBM DeveloperWorks

ASP.NET Web Hosting

ATL

MFC

STL

WTL

COM / COM+

.NET Framework

Win32/64 SDK & OS

Vista API

Vista Security

Cross Platform

Game Development

Mobile Development

Windows CardSpace

Windows Communication
Foundation

Windows Presentation
Foundation

Windows Workflow
Foundation

Libraries

Windows Powershell

LINQ

Home Articles Message Boards Job Board Catalog Help!

Soapbox

01.07.2009 CodeProject: Handling VB Active…

codeproject.com/…/vbeventswith… 1/8

To declare a custom event called evtTaskDone in VB, use
the Event keyword in the General Declarations section of a

class module like:

 Collapse

Public Event evtTaskDone()

This custom event can then be fire by using the

RaiseEvent keyword like:

 Collapse

RaiseEvent evtTaskDone

With all that in mind, we now roll up our sleeves and dig into

some code. First, we are going to build a VB ActiveX DLL that

is the source of the event.

Building the event source

Fire up VB and in the New Project dialog, choose ActiveX

DLL and click Open. VB creates a new DLL component

project called Project1, having a single class Class1. Go to

Project->Properties and set the Project Name as VBEvents.

In the Project Explorer View, right-click on Class1 and choose

to remove it from the project. Note: We could also have

chosen to use this class, but then we wouldn't have seen the

VB Class Builder.

Now right-click again on the Project Explorer View and add a

single Class Module to the project. In the Add Class

Module dialog, choose VB Class Builder and click on Open.

In Class Builder, go to File->New->Class and add a new

class called clsEventSrc Accept the default values and
click on OK. Next, go to File->New->Event and add a single

event to this class called evtNotify. Update all the
changes to the project and close the Class Builder window.

Next, click on Tools->Add Procedure and add a new

procedure to the clsEventSrc class called prcFireEvent

to the class you just created like:

 Collapse

Public Sub prcFireEvent()

RaiseEvent evtNotify

End Sub

The procedure simply fires our event. Save everything and go

to File->Make to build VBEvents.dll and register the

component.

Building the MFC client

Our MFC client, is a plain old Appwizard generated Dialog-

based application with additional Automation support. As

usual, open VC++ 6.0 and create a new MFC Appwizard EXE

project called MFCClient. Hit Build to build the project, and

take a break from all that hard work!

The OLE/COM Object Viewer is a nifty little tool that is

shipped along with Visual C++ 6.0. It will help us generate

the IDL file for the DLL component. Go to Tools->OLE/COM

Object Viewer and open this tool. Next, in OLE/COM Object

Viewer, click on File->View Typelib and navigate to the

VBEvent.dll file that we have previously built. Ready for some

magic? Click on Open and open up ITypeLib Viewer Can you

can view the IDL file? Whoa! Save the file through File-

>Save As, as VBEvents.IDL and close the tool. We have no

need for it at present.

Next in our VC++ project, add this IDL file to the project. In

FileView, right click on the IDL file and choose Settings. In

the MIDL tab, set the Output header file name to

VBEvents.h and the UUID filename to VBEvents_i.c. Also

deselect the MkTyplib compatible option.

Save everything and in FileView, right-click on the

VBEvents.IDL file and choose Compile. This will build the

typelibrary and generate the necessary files.

Examine the MIDL generated VBEvents_i.c file. It contains all

the UUID definitions that the client can use to build a sink

object. In VBEvents.h, notice the dual interface
_clsEventSrc. The component's dispinterface
__clsEventSrc is identified by DIID___clsEvent. This is
the event source for out custom event.

01.07.2009 CodeProject: Handling VB Active…

codeproject.com/…/vbeventswith… 2/8

3 4

3 4

The next step is to add an sink object to connect to the

source event. Fortunately, for us, MFC makes the task of

building an event sink as easy as 1-2-3 (and well,4-5-6) With

a couple of MFC macros, you can delegate much of the

intricacy involved behind building a sink to MFC. First, add a

new CCmdTarget derived class to the project called
MFCSink. In the ClassWizard choose to select the

Automation option. This is our sink object with Automation

support.

Then import the server's typelib in the client with #import. If

you haven't read my previous artic le, read it here. Otherwise,

go right ahead and use code like:

 Collapse

#import "VBEvents.dll" rename_namespace("MFCClient")

using namespace MFCClient;

There's nothing new to this code. While you are there in

stdafx.h, also #include the afxctl.h file

Next, open MFCSink.cpp and modify the INTERFACE_PART

macro so that the second parameter (IID) is the IID of the

event source, in our case DIID___clsEventSrc. Your
interface map should look like:

 Collapse

BEGIN_INTERFACE_MAP(MFCSink, CCmdTarget)

INTERFACE_PART(MFCSink, DIID___clsEventSrc, Dispatch)

END_INTERFACE_MAP()

Next, in the DISPATCH Map of the MFCSink class add a
DISP_FUNCTION_ID macro for each of the events defined
in the source interface that you want to handle. My
DISPATCH Map looks like:

 Collapse

BEGIN_DISPATCH_MAP(MFCSink, CCmdTarget)

 //{{AFX_DISPATCH_MAP(MFCSink)

 DISP_FUNCTION_ID(MFCSink, "evtNotify",1,evtNotify, VT_EMPTY, VTS_NONE)

 //}}AFX_DISPATCH_MAP

END_DISPATCH_MAP()

In Classview, right-click on the IMFCSink interface and add
a single Method evtNotify(). Notice, that as per our
DISPATCH Map, this method takes no parameters and returns

a void. Our implementation of this method displays a simple
MessageBox and looks like:

 Collapse

void MFCSink::evtNotify()

{

// TODO: Add your dispatch handler code here

AfxMessageBox("Event notification handled in MFC client");

}

All that remains for us to do is hook up and terminate the

connection appropriately in the client code. MFC makes this

job very easy with AfxConnectionAdvise() and

correspondingly AfxConnectionUnadvise(). If you are
not familiar with these functions, now would be a good time

to look up their documentation.

Moving on, declare three variables in the dialog class header

as :

 Collapse

_clsEventSrc *m_pSrc;

MFCSink *m_pSink;

DWORD m_dwCookie;

The first is a pointer to the interface through which we shall

fire the event. The second is a pointer to the sink object.

Lastly, the m_dwCookie variable is a cookie that stores the

number of connections that has been established. We'll need

this when we want to disconnect from the event source. In

our case, we set this to 1 in the dialog class constructor.

Don't forget to #include the VBEvents_i.c file. The code to

01.07.2009 CodeProject: Handling VB Active…

codeproject.com/…/vbeventswith… 3/8

3 4

3 4

establish the connection in the dialog's OnInitDialog()

member function looks like:

 Collapse

CoInitialize(NULL); /*Initialize COM system*/

m_pSink=new MFCSink; /*create an instance of the sink object*/

/*create source object*/

HRESULT hr=CoCreateInstance(CLSID_clsEventSrc,NULL,CLSCTX_INPROC_SERVER,IID_IDispatch,(

if(SUCCEEDED(hr))

 LPUNKNOWN m_pUnk=m_pSink->GetIDispatch(FALSE);

if(SUCCEEDED(hr))

{

 /*establish the connection*/

 if (AfxConnectionAdvise(m_pSrc,DIID___clsEventSrc,m_pUnk,FALSE,&m_dwCookie))

 return TRUE;

 else

 return FALSE;

}

else

 return FALSE;

As we have setup a connection, we also need to disconnect

when the dialog is destroyed. We can do that in the dialog's
OnDestroy(). In ClassView, right-click the dialog class and
Add a Windows message handler to handle WM_DESTROY

messages. In the handler, add the following code to

successfully disconnect.

 Collapse

LPUNKNOWN m_pUnk=m_pSink->GetIDispatch(FALSE);

AfxConnectionUnadvise(m_pSrc,DIID___clsEventSrc,m_pUnk,FALSE,m_dwCookie);

if(m_pSink!=NULL)

{

 delete m_pSink; /*the sink destructor must be public or compiler will complain*/

 m_pSink=NULL;

 m_pSrc=NULL;

}

With everything in place, we now need to fire the event.

Simply call:

 Collapse

m_pSrc->prcFireEvent();

anywhere in your code where you want to fire the event.

ATL Client

Building a pure ATL client means a little more typing than the

MFC client. But it's a lot easier than creating connectable

objects in raw C++. Remember, that the sink has to support
IDispatch. So that means at a minimum, implementing 7
methods.(3 for IUnknown and 4 for IDispatch). To our
relief, ATL provides the IDispEventSimpleImpl<> and
IDispEventImpl<> template classes that helps us in
quickly creating dispinterface sink objects. These is a
host of information and code available for creating ATL sinks

for dispinterface based source objects that you might
want to lookup. Relevant Microsoft KB Articles Q:181277,

Q:181845 and Q:194179

Back to the task at hand, to make our client very efficient,

we'll use an IDispEventSimpleImpl derived class. First
create a new ATL/COM AppWizard generated EXE project

called ATLClient. To this add a dialog called
ATLClientDlg. The dialog has two buttons, one to setup
the connection and the other to fire the event. Next import

te server's typelib with #import as described in the MFC

client section above. Moving on to the sink object, the

declaration looks like:

 Collapse

#define IDC_SRCOBJ 1

static _ATL_FUNC_INFO OnEventInfo = {CC_STDCALL, VT_EMPTY, VT_NULL};

class CSinkObj : public IDispEventSimpleImpl<IDC_SRCOBJ, CSinkObj, &__uuidof(__clsEventSrc)>

{

public:

 HWND m_hWndList;

01.07.2009 CodeProject: Handling VB Active…

codeproject.com/…/vbeventswith… 4/8

3 4

3 4

 CSinkObj(HWND hWnd = NULL) : m_hWndList(hWnd)

 {

 }

BEGIN_SINK_MAP(CSinkObj)

 //Make sure the Event Handlers have __stdcall calling convention

 SINK_ENTRY_INFO(IDC_SRCOBJ, __uuidof(__clsEventSrc),

END_SINK_MAP()

 // Event handler

 HRESULT __stdcall evtNotify()

 {

 // output string to list box

 TCHAR buf[80];

 wsprintf(buf, "Sink : Notification Event Received"

 AtlTrace("\n%s",buf);

 return S_OK;

 }

};

All I have done is add a sink map to the
IDispEventSimpleImpl-derived class and then add a sink
entry corresponding to each event of a source interface that

I would like to handle. The ATL_FUNC_INFO structure helps
us pass parameters to event handlers. In our event handler

however, we do nothing fancy. Just a simple debug message

would do.

In the dialog class, add variables:

 Collapse

private:

 CSinkObj* m_pSink;

 _clsEventSrc *pEvent;

The dialog class's OnConnect() looks like:

 Collapse

LRESULT OnConnect(UINT,WORD,HWND hWndCtrl,BOOL& bHandled)

{

 m_pSink=new CSinkObj(hWndCtrl);

 HRESULT hr=CoCreateInstance(CLSID_clsEventSrc,NULL,CLSCTX_INPROC_SERVER,

 __uuidof(_clsEventSrc),(void

 if(SUCCEEDED(hr))

 {

 m_pSink->DispEventAdvise(pEvent);

 }

 return hr;

}

As before, call:

 Collapse

pEvent->prcFireEvent();

when you want to fire the event. Don't forget to use
DispEventUnadvise() to disconnect when the dialog is
destroyed.

That's it! We have built both an MFC and an ATL client that

responds to events generated by a VB ActiveX DLL code

component. The code and project files were built with Visual

C++ 6.0 SP3 under Win95.

I have included another project VBTimer consisting of a VB

ActiveX DLL and respective ATL client project files. This

project does something a little more sophisticated than our

first VB DLL, which fires an event without any parameters.

The ActiveX DLL implements a VB Timer that fires an event

with an single parameter (timer count) after every 1 second

interval. This event is caught by the ATL client that displays

the timer count in the output window.

References

NIIT Technical Reference

Microsoft KB Articles Q181845,Q181277 and Q194179

License

01.07.2009 CodeProject: Handling VB Active…

codeproject.com/…/vbeventswith… 5/8

This artic le has no explicit license attached to it but may

contain usage terms in the article text or the download files

themselves. If in doubt please contact the author via the

discussion board below.

A list of licenses authors might use can be found here

About the Author

Amit Dey

Member

Amit Dey is a freelance programmer

from Bangalore,India. Chiefly

programming VC++/MFC, ATL/COM

and PocketPC and Palm platforms.

Apart from programming and CP, he

is a self-taught guitar and keyboard

player.

He can be contacted at

visualcdev@hotmail.com

Occupation: Web Developer

Location: India

Other popular
COM / COM+
articles:

Introduction to

COM - What It

Is and How to

Use It.
A tutorial for
programmers
new to COM that
explains how to
reuse existing
COM
components, for
example,
components in
the Windows
shell.

COM in plain C
How to
create/use COM
components in
plain C, without
MFC, ATL, WTL,
or any other
framework.

Understanding

Classic COM

Interoperability

With .NET

Applications
Discusses how
existing COM
components can
be used from
managed code.

Getting the

most out of

IDispatch
A C++ class that
makes it
extremely easy
to use a COM
object, even in
console apps

Introduction to

COM Part II -

Behind the

Scenes of a

COM Server
A tutorial for
programmers
new to COM that
explains the
internals of COM
servers, and how
to write your own
interfaces in
C++

Article Top Sign Up to vote for this article

You must Sign In to use this message board.

01.07.2009 CodeProject: Handling VB Active…

codeproject.com/…/vbeventswith… 6/8

 FAQ Search

Noise Tolerance 6Medium Layout 6Normal Per

page 625 Update

 Msgs 1 to 25 of 39 (Total in Forum: 39) (Refresh) First Prev Next

Very Big
Question

charfeddine_ahmed
3:09 10 Jul '06

Error while
compiling my
project

mahajan suyog
4:03 15 Jul '05

Create an
ActiveX object
in a VC++
Application

Anonymous

8:39 13 Apr '05

Unsolvable compilation
problem with
DIID___clsEventSource

Kza Wah

23:49 9 Jan '05

simply
superbbbb!!

Sivakumar R
0:38 1 Jul '04

I have to ask
PFlorin

23:57 9 Jun '04

GetIDispatch
Failure MSVC
Remote
Debugger

nnoydb

6:03 23 Mar '04

creating event
dll in mfc
shared dll

Xins
18:00 10 Mar '04

Re: creating
event dll in
mfc shared
dll

charfeddine_ahmed

21:57 11 Jul '06

How to pass
data?

hewang
15:29 30 Jan '04

VB Client, MFC
server?

darwinw
19:01 17 Nov '03

Problem with
my ActiveX

hajer
3:13 11 Jul '03

Loosing
connections

satya1975
9:37 10 May '03

wow great satya1975 14:27 8 May '03

Using out-of-
process
ActiveX EXE

Anonymous
3:01 28 Apr '03

Re: Using
out-of-
process
ActiveX EXE

Amit Dey

11:00 16 May '03

Re: Using
out-of-
process
ActiveX
EXE

uu3510251

17:57 22 Apr '04

AfxConnectionAdvise()
guzial

1:03 11 Dec '02

How to
connectable
objects in raw
C++

Jack Modulator

23:40 16 Aug '02

Re: How to
connectable
objects in
raw C++

Amit Dey

11:03 19 Aug '02

What if we use
an ActiveX EXE Anonymous

13:17 30 May '02

Misleading
title

VC++ programmer
11:26 20 Dec '01

What happen
with VC+MFC
ActiveX
Controls

Xavi Navarro

22:12 13 Feb '02

Re: What
happen
with
VC+MFC
ActiveX
Controls

Amit Dey

4:27 14 Feb '02

Re:
What
happen
with
VC+MFC
ActiveX
Controls

Xavi Navarro

2:36 15 Feb '02

Last Visit: 8:41 1 Jul '09 Last Update: 8:41 1 Jul '09 1 2 Next »

01.07.2009 CodeProject: Handling VB Active…

codeproject.com/…/vbeventswith… 7/8

 General News Question Answer Joke

Rant Admin

PermaLink | P rivacy | Terms of

Use

Las t Updated: 8 May 2001

Editor: C hris Maunder

C opyright 2001 by Amit Dey

Everything else C opyright © C odeP rojec t,

1999-2009

Web13 | A dvertise on the C ode P rojec t

01.07.2009 CodeProject: Handling VB Active…

codeproject.com/…/vbeventswith… 8/8

